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INTRODUCTION 

Tnat iodine and iodide ions interact with each other in 

aqueous solutions has been known for more than a century, and 

systematic studies of the reaction have appeared in the liter­

ature from time to time during the past sixty years. In spite 

of this, it Is not yet certain that the most simple inter­

action ir: these solutions has been satisfactorily described 

from a quantitative point of view. This reaction leads to the 

formation of the trilodide ion, I~ which establishes an 
3 

equilibrium with free iodine and iodide ion according to the 

equation: 

I2 + I (aq)^=±I~ (aq) . (Eq. 1) 

The earliest investigators were quantitatively accurate 

in their descriptions of this reaction for only the most 

dilute solutions of iodine in dilute aqueous solutions of 

iodide ion. The apparent variation in the formation constant 

of the trilodide ion in more concentrated solutions of reac-

tants seemed rather puzzling, and is still an enigma only 

partially resolved. 

The first explanation offered to account for the variation 

was that in moderately concentrated solutions, the interac­

tions between iodine and iodide ions were not confined to the 

trilodide stage, but that higher order complex ions were pro­

duced in solution. The experimental data elaborating upon 

this suggestion are inconsistent in part, and in general 
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relate to tr.e solid s Late rather thai, to aqueous solutions. 

Actual investigation of the species which exist in solutions 

has been somewhat neglected due to the tendency to assume that 

they contain the same complexes found in the solid state. 

One of the difficulties which is encountered in an in­

vestigation of these solutions is the regrettable lack of 

knowledge concerning activity coefficients for those complexes 

which may be present. This fact was recognized in a primitive 

way by even the earliest investigators who continually re­

ferred to the necessity for assuming equal degrees of disso­

ciation for the -iodide and polyiodide salts. Indeed, at one 

time an attempt was made to explain the behevior of concen­

trated solutions of iodine in iodide in terms of merely activ­

ity corrections. There is, however, ample evidence at the 

present time to show that the observed effects would be ex­

ceedingly difficult to handle in such a manner. 

An even more fundamental difficulty is encountered, how­

ever, inasmuch as the identities of those complexes other than 

trilodide which might exist in aqueous solutions are unknown. 

Until the nature of these complexes is established, very 

little progress can ce made toward a quantitatively satisfac­

tory description of such solutions. In the light of a few 

excellent accounts of pentaiodides, heptaiodldes, and even 

enneaiodides in the literature, it has been tacitly assumed 

that the ions whicn exist in solution are of the same general 
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type, namely I ^ ̂. However, there have been occasional 

references to the possible existence of ions of the type, 

I~n+,, as well* It is the primary purpose of the present 

research to identify those ions of either type which may be 

present in moderately concentrated solutions of iodide Ion 

over the entire solubility range of iodine. 

One of the most fascinating polyiodide-containing systems 

is the so-called starch-iodine complex. The reaction of 

starch with iodine to form an intensely colored product has 

actually been under investigation even longer than the reac­

tion of iodine with iodide in the absence of starch. None­

theless, due to the scant knowledge of the true nature of 

either starch or aqueous solutions containing iodine and 

iodide, there is still very little that may be said with 

certainty about the nature of the starch-iodine reaction. 

The literature is replete with fragmentary and contradictory 

accounts of the reaction. Since the starch-iodine reaction 

appears to lead to the formation of polyiodldes of a dis­

tinctly different nature from those formed in aqueous solu­

tions of iodine and iodide alone, as judged by the markedly 

different light absorption in the visible region of the spec­

trum, it is also the objective of the present investigation 

to elaborate upon these differences. 
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REVIEW OF LITERATURE 

Formation of Polyiodides 

Shortly after the discovery of iodine in 1811 by 

Courtois, the observation was made by Gay-Lussac (l) that 

the presence of KI greatly enhanced the solubility of Ig in 

aqueous solutions. Due to the marked color change which 

accompanied this phenomenon, he suggested that a real chemical 

reaction had occurred between Ig and KI in solution. 

For the next fifty years, this observation remained in 

obscurity; however, in 1660, the question was first raised by 

Baudrimont (2) as to whether or not a "true chemical bonding11 

existed between the Ig and KI in aqueous solutions. He had 

found it possible to completely extract Ig from its solutions 

in aqueous KI by merely shaking with carbon disulfide. Thus, 

he concluded that no "true chemical bonding"existed. The 

same conclusion was reached by Dossioss and Weith (3) who 

showed that bubbling air through a solution of Ig in KI re­

sulted in complete removal of the Ig. 

The entire question took a new turn when in 1877 Johnson 

(4) was able to crystallize a material from exceedingly con­

centrated solutions of Ig in aqueous KI which satisfied the 

empirical formula, KI^. The volume changes which occurred 

upon dissolving the material suggested that it was not merely 

KI in loose combination with Ig, but was a true trilodide 
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salt. An effort v-as made by Wells and Wheeler (5) in 1892 to 

prepare tri iodides of potassium, cesium, and rubidium. Some 

physical properties including the melting points, solubility 

characteristics, and descriptions of crystal types were tabu­

lated by these investigators - They also prepared a few of the 

mixed trihalide salts and the pentaiodide of cesium. 

In spite of the unquestionable existence of polyiodides 

in the solid state, uhe existence of an Ig - KI compound in 

solution could still be questioned. Le Blanc and Koyes (6) in 

1390 performed a series of cryoscopic measurements upon solu­

tions of KI containing various amounts of dissolved Ig. The 

observed failure of substantial amounts of Ig to depress the 

freezing point to the extent expected if no interaction had 

occurred led clearly to the conclusion that the solute was 

associated to some degree. These investigators also performed 

a conductometrie experiment which led them to believe that 

there existed in solution an equilibrium between free Ig, free 

I~, and some unidentified complex containing both Ig and I-. 

Confident of the existence of trilodide in the solid 

state, Jakowkln (7) set out to prove its existence in solu­

tion . He devised a technique for examining the equilibrium 

between Ig and I~ to form I~ in aqueous solutions. His now 

well known distribution technique consisted of allowing iodine 

to distribute itself between an aqueous phase containing KI 

and a second liquid phase in which Ig was soluble, but I~ and 
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I were not. Tnis allowed the determination of the free I0 in o  £  

the aqueous phase at equilibrium since it is related to the 

experimentally determined concentration in the second liquid 

phase through a distribution coefficient. Jakowhln used car­

bon disulfide as his immiscible liquid phase and determined a 

value for the dissociation constant of KIg of 1.6? x 10"^ at 

i:50C . In a later study, Jakowkln (8) discovered a systematic 

variation of the distribution coefficient with Ig concentra­

tion. Attributing this to iodine-organic solvent interaction, 

he proceeded to recalculate tne dissociation constant for more 

appropriate values of the distribution coefficient. The new 

value was 1.4 x 10-^ which is not unlike the value obtained 

in recent more critical determinations. 

However, this value seemed to be a true constant only for 

rather dilute solutions of Ig and KI. The value of the equi-

llcrium constant appeared to vary systematically with the Ig 

concentration, and although the effect was barely noticeable 

at tne lowest I- concentrations, it did become increasingly 

apparent at higher I- concentrations. It was easily observed 

in solutions only 0.1 M In KI. Jakowkln attributed this 

behavior to the formation of higher polyiodides at higher 

concentrations and even suggested that I" might be the next 

ion of significance. 

In studying tne effect that the cation had on the equi­

librium constant, Jakowkln (9) found that the value for the 
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constant, vias essentially the same with Li+, Na*, K1", and Bs++ 

indicating that the equilibrium really did involve an 1^ ion 

rather than its una!ssoelated salt. A somewhat lower value 

was found for HI . 
ô  

Several Investigations, notably those of Koyes and 

Seidensticker (10) and Fedotieff (11), showed that in dilute 

solutions of I the solubility of Ig could be explained on 

the assumption that only I and no higher complex was formed. 
ô  

Korenmann (12) has also shown this in a very recent investiga­

tion of the polyhalide salts. Korenmann obtained a value for 

the dissociation constant of I~ of 1.33 x 10~'^ at 25°G. At 
Ô  

moderate I~ concentrations, however, the solubility of Ig is 

considerably more than may ce accounted for by the free Ig and 

I~ only. 
ô  

Following the suggestion that the higher polyiodides must 

surely exist, attempts were made to prepare these compounds. 

It had beei. reported by Johnson (4) that KI^ was extremely 

difficult to octain in the solid state due to its hygroscopic 

nature. It could be expected that crystallization of higher 

polyiodides would be an even more formidable task. 

Aoegg and Hamburger ( 13) made a phase study of KI - Ig 

mixtures in saturated aqueous solutions which had been equi­

librated with benzene. Only the Ig was soluble in the benzene 

phase and consequently they were able to follow the free 

iodine concentration of the aqueous phase by means of the 
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distribution coefficient. According to the phase rule, as 

long as only two solid phases are present, the proportions of 

these solids may be varied continuously without changing the 

composition of the saturated solution. However, If sufficient 

excess of one of the solias has been added to react with all 

of the other ana causes its dissolution, the system will gain 

a degree of freedom. Thus, the composition of the solution 

will vary until it becomes saturated with another Ig - KI com­

pound. One may ascertain the composition of the solids 

present when new phases appear by simply following the com­

position of the saturated solution. Abegg and Hamburger did 

not find Kl^, but reported a KI^. Also reported were Rblg, 

Csl , Rbl?, Csl?, Rbl0, and Gslg. Evaluation of this work is 

difficult since the data on the composition of the solid 

phases which led to their conclusions were not published. 

Furthermore, the actual variation in Ig content of the benzene 

phase was rather small making it difficult to detect real 

changes in Ig concentration. Linhart (14) later examined the 

solubility aata of Abegg and Hamburger and found it grossly 

inconsistent. 

However, another phase analysis of the KI - Ig system 

was made by Foote and Chalker (15) in 1908 in which they 

analyzed botn the solid and aqueous phases for Ig and KI con­

tent. This investigation confirmed the existence of KI^ as 

reported oy Johnson (4) and of KI,-, as reported by Abegg and 
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cry stallograpnic I - I distances is given by Slater (20). A 

comprehensive discussion of the crystalline polyhalide ions 

has been given by Bundle (21) in an effort to correlate the 

available crystal data -with molecular orbital calculations. 

The pentaioaide of tetramethylammonium has been investi­

gated by Hach and Bundle (22), and even the enneaiodide of 

tetramsthylammonium has been subjected to crystaliographic 

analysis by Bundle et al. (23). A crystalline compound con­

taining the I~ ion has also been studied by Havinga _et al. 
8 

(^4) by means of x-ray analysis-

At about the same time that research was in progress to 

identify the anomalous behavior of concentrated Ig - KI solu­

tions witn the probable existence of higher polyiodides, Lewis 

(%5) published his now well known ideas with regard to the 

concept of activities. Certain investigators, notably Parsons 

and Corliss (26) and Parsons and Whittemore (27), then sought 

to explain the behavior of such solutions on the basis of 

activity effects alone, and even denied the existence of tri­

lodide ion. 

Dawson (28) had shown that HI^ behaves as a strong elec­

trolyte in the course of his determination of the dissociation 

constant for trilodide ion at 13.5°C- It seemed, therefore, 

that there could be no serious error in assuming the activity 

coefficients of HI^ and HI to be equal, at least in dilute 

solutions. Bray and McKay (28) concluded from their investi-
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Hamburger (1-3). They also reported the existence of the solid 

compounds Rcl^, Csl^, and Csl ̂. They were, however, unable to 

confirm the higher Rb+ and Cs+ polyiodides which had been pre­

viously reported by Abegg and Hamburger (13). 

Evidence was also presented in 1902 by Dawson and Gawler 

(16) for the existence of higher polyiodides in nitrobenzene 

solutions. It was shown that although KI is itself insoluble 

in nitrobenzene, it may be extracted from its aqueous solu­

tions by a nitrobenzene solution containing Ig. The ratio of 

Ig to KI in saturated nitrobenzene solutions approached a 

value of four. Thus, if the existence of only one complex 

were to be assumed, this ratio would require it to be the 

enneaiodide. At any rate, no matter how many complexes are 

present, complexes other than those containing iodine and 

iodide in a 1:1 ratio would be required to explain the ob­

served ratio. Similar results were reported by Dawson and 

Goodson (17) using the iodides of NH*, Na+, Li*, Rb+, Cs+, 

3a"1"1*, and Sr++. They were, however, unable to obtain any 

solid ennealodides. 

This early confusion as to the existence of the solid 

polyiodides has long been dispelled, however, and several ex­

cellent crystaliographic studies by means of x-ray analysis 

of crystalline polyiodides are available. The triiodldes of 

ammonium and tetraphenylarsonium have been Investigated by 

Kooney (18, 19) and a theoretical discussion of the various 
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gâtions oï the trilodide equilibrium that no assumptions re­

garding the relative values of these activity coefficients 

could yield a satisfactory account for the behavior of more 

concentrated solutions. Furthermore, Washburn and Strachan 

(30) performed an experiment in which activity corrections 

were made from conductivity data. The results indicated that 

the variation of the trilodide dissociation constant could not 

be a simple activity effect. Thus, it seemed more realistic 

tj pursue the initial suggestion that higher polyiodides must 

exist in aqueous solutions. 

Linhart (31) made an attempt to describe the behavior of 

relatively concentrated solutions of KI saturated with Ig in 

terms of two complex ions, I~ and I~4. Although this descrip­

tion of the saturated solutions is In fair agreement with the 

experimental data, it is not unlikely that as good or better 

agreement might be obtained assuming the existence of a 

greater number of smaller complex ions. Furthermore, It seems 

more realistic to assume that ions considerably more simple 

than I~^ are more likely to exist in these solutions- It is 

of some interest to note, however, that an ion of the type 

I" was suggested by Linhart. 
kn+2 

It is also of some interest to note that an experiment 

performed by Laurie (32) as long ago as 19OS had led him to 

believe that even in solutions up to 1 k in KI and saturated 

with Ig, trilodide is the only complex present. A closer 
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examination, however, reveals that the proper interpretation 

would be that in such solutions a large proportion of the 

complex ions do contain Ig and I~ in a 1:1 ratio. One should 

note that this would Include Ig as well as I~. 

Davies and G-wynne (-33) have recently attempted to de­

scribe the behavior of moderately concentrated solutions of 

KI containing I^ by assuming alternatively the existence of 

I" or Ig in addition to I~. They have shown that Ig is more 

consistent with their data, but have not explicitly elimin­

ated the possibility that 1^ or even other complex ions might 

be present. These same authors performed a series of investi­

gations of the temperature dependence of the trilodide forma­

tion constant, and have shown that the interaction energy of 

Ig and I- is consistent with an ion-induced dipole type re­

action . 

In addition to the liquid-liquid distribution technique 

introduced by Jakowkln, another distribution technique was 

used by Jones and Kaplan (34). This technique involves the 

equilibration of iodine between two aqueous phases via the 

vapor phase in a specially designed equilibrator. One of the 

aqueous phases is iodide free; thus, the free iodine activity 

may be obtained by titration of this phase. The dissociation 

constant found for the trilodide ion by this procedure is in 

fair agreement with that found by Jakowkln's method. 

The absorption spectrum of an Ig - KI solution offers 
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strong evidence for the existence of a complex in solution. 

Tne absorption spectrum of aqueous KI - Ig solutions is char­

acterized by ÛWO prominent maxima at about 2900 % and 3500 %.. 

The intensity of the maxima depend upon both the Ig, and the 

KI concentrations. Neither maximum is present in Ig or KI 

solutions alone- Consequently, this constitutes strong evi­

dence that an absorbing species other than Ig or KI is present 

in these solutions. The spectra of various trilodide salts 

have been examined by Allsopp (55) who reported that all of 
o 

the salts examined possessed the two maxima at 2900 A and 
o 

•3500 A with about the same molar acsorbancy indices. It would 

seem plausible, therefore, to assume that these maxima are 

actually characteristic of the production of I~ from Ic and 
'J C 

I in aqueous solutions. It has also been suggested by the 

same author that the 6000 cm-1 frequency separation of these 

two maxima is consistent with the production of both an ex­

cited and normal iodine atom in the , and . states In 
•1/2 3/2 

the absorption process. Evidence that an I - I- configuration 

was required to obtain these maxima was also obtained. This 

is entirely consistent with the view that an ion-induced 

dipole reaction occurs to produce a trilodide ion. 

An observation due to Winther (36) and disputed by 

Fors ter (37), the significance of which has been long neg­

lected, Is that although the relative intensities of the 
o o 

2900 A and 3500 A maxima remain constant over a wide range of 
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KI concentrations, at a sufficiently high KI concentration 
g o 

the 3500 A kaxlmuiii increases while the 2900 A maximum de­

creases in intensity upon the further addition of KI. Al­

though this observation has not been explained in the 

literature, It is the contention of the present author that 

this mav be construed as evidence for the existence of I,. 
4 

Such interpretation may also be placed upon the curious re­

versal of the relative intensities of these two bands men­

tioned by Symons and Doyle (38) in their discussion of color 

centers in alkali halide crystals. Studies by Awtrey and 

Connick (39) made use of the molar absorbancy index of 1^ at 
o 

3520 A to determine the dissociation constant of the tri­

lodide ion. 

The only Investigation of the kinetics of the trilodide 

equilibrium is due to Myers (40) who performed an experiment 

based upon the fact that the nuclear magnetic resonance 

absorption line of iodide ions is broadened by the presence 

of Ig molecules. The broadening is interpreted as being due 

to the diminution of the phase-memory time of the nuclei in 

the iodide ions. The strong auadrupolar coupling in the tri­

lodide ion is responsible for this diminution. From the 

degree of broadening caused by various Ig concentrations, it 

is possible t- calcule te the average lifetime of an iodide 

ion, and from this the rate constant for the reaction. 

Assuming a simple bimolecular process, the rate constant for 
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the formation of triiodlde is 4.1 x 10-^ 1 mole ^sec-^. The 

7 rate constant for the dissociation of trilodide Is 7.6 x 10 

sec~x- These studies were performed at 35°C. 

The most extensive studies of the temperature dependence 

of the value for the triiodlde dissociation constant are due 

to Davies and G-wynne (33). However, the value for A.H of 

the reaction found by these authors does not agree with that 

of Awtrey and Connick (39); furthermore, an unusually large 

&Cp for the reaction was observed. The results of these and 

other investigations of the dissociation constant for tri­

iodlde and its temperature dependence are tabulated in Table 

1 and Table 2. 

Starch-Iodine Reaction 

It is well known that aqueous solutions of iodine are 

capable of assuming a deep blue color in the presence of 

starch. The complex which Is recognized as being responsible 

for this pronounced absorption of red light has been the 

subject oi' sporadically intense Investigation for nearly one 

hundred and fifty years. Nonetheless, as in the case of the 

formation of polyiodine complexes in the absence of starch, 

the nature of the reaction which leads to the formation of 

this blue complex is rather imperfectly understood. 

The apparent contradictions and confusion in the earliest 

literature on the starch-iodine reaction may be attributed to 
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Table 1. Significant values for the formation constant, Kg, 
v * WA A.ouxuO O. V 

Kg t(°C) Reference Remarks 

1406 0 .0 34 Vapor phase distribution; hydrolysis8. 

1408 0 .0 41 Hydrolysis repressed 

1529 D 1 .0 39 Spectrophotometric determination 

985 13 .5 28 Conductometrie ; hydrolysis repressed 

909b 16 • 1 39 Spectrophotometry determination 

715 z 5  .0 8 Early value; hydrolysisa 

769 25 .0 30 Dissociation of HIg 

714 25 .0 34 Vapor phase distribution; hydrolysis8. 

75i %5 .0 12 Solubility data on dilute I~ solutions 

768 25 .0 33 Extrapolated value 

571° 53 .4 39 Spectrophotometric determination 

590 38 .38 35 Extrapolated value 

481D 39 • 2 39 Spectrophotometrie determination 

490 49 .65 33 Extrapolated value 

411 63 .05 33 Extrapolated value 

aNo attempt was made to prevent the formation of I by 
hycirolysis of 1^. 

bThese values are based upon an assumed value of 714 at 
25°C. 
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Table 2. Summary of values for AHg octalned from tempera-
Lure variation of 

AHg (cal) t(°C)D Reference Remarks 

5100 — — 39 Based upon 
25°Cc 

assumed K3 at 

4304 12.5 34 From Kg at 0°C and 25°C 

3645 31.69 33 From Kg at 25°C and 38.38°C 

3272 

H
 
0
 

1 33 From K? at 
49.65°C 

38.38°C and 

2815 56.35 33 From Kg at 
63.05°C 

49.65°C and 

aThe enthalpy and equilicrium constant are for the 
formation of triiodlde Ion from aqueous Ig and aqueous I . 

bThe temperature given is the mean of the temperatures 
for which Kg has been determined. 

cThis is an average value for A H, over the temperature 
range 0.0°C to 39.2°C. 

the hopelessly inadequate state of knowledge concerning the 

nature of starch itself at the time. It is really only in 

relatively modern times that starch has been identified as 

a mixture of two essentially different kinds of high poly­

meric sucstances whose affinities for iodine differ markedly. 

The mixture itself is not a simple one inasmuch as its com­

ponents constitute a polydisperse system of such a nature 

that the iodine binding capacity of these components is pro­

foundly dependent upon the degree of polymerization (DP). 
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Of equally important significance is the role which molecular 

geometry plays in this rather unique type of complex. It has 

been the result of attention to such details as these and to 

the recognition of the importance of the slight but non-

negligible hydrolysis of iodine in aqueous solutions that 

new and challenging concepts have been introduced in the 

elucidation of the starch-iodine system. 

Observations by Bundle and Baldwin (42) on the dichroism 

of flow exhibited by solutions of the complex when subjected 

to a velocity gradient suggested that the complex might have 

a helical configuration ; subsequent interpretation of x-ray 

data on the complex in the solid state by Bundle and French 

(43) left little doubt but that at least in certain crystal­

line modifications, an amylose helix enclosing a "polyiodine 

core11 must be present. 

Following the development by Schoch (44) of a fractiona­

tion technique by means of which starch could be separated 

into amylose, a linear polymer, and arnylopec tin, a highly 

cranched polymer, it became possible to accumulate more mean­

ingful quantitative data on the starch-iodine reaction. It 

was discovered by Baldwin et; al. (45) in 1944 that it was 

really the amylose which reacted with iodine to form an in­

tensely blue complex. The reaction of iodine with arnylopectin 

led to the formation of a "plum-colored11 complex. In 1948, 

Swanson (46) confirmed this observation and in addition showed 
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that tne color of even the amylose-Iodine complex was a sensi­

tive function of the degree of polymerization of the amylose, 

changing from an intense blue to deep red as the degree of 

polymerization decreased. 

It was also shown by Baldwin e?t al. (45) by spectro­

photometry titration that higher iodine activities were 

required to saturate the complex at higher iodide ion concen­

trations . This suggested to these authors that iodide ion 

might conceivably be an integral part of the polyiodine core -

The fact that crystalline amylose could absorb iodine vapors 

to form the complex, however, made the exact role of iodide 

ion uncertain. Very recent evidence has been produced by 

Thorna and French (47) to demonstrate that iodide ion is 

absolutely essential for the formation of the blue complex 

in aqueous solutions. These Investigators showed that when 

the hydrolysis of iodine was completely repressed, the only 

absorption in the visible spectrum of an amylose-iodine solu­

tion was that due to the iodine itself. 

A potentiometrie technique was successfully adapted to 

the study of the starch-iodine reaction by Bates et al. (48). 

A later modification due to Gilbert and Marriott (49) enabled 

the utilization of differential titration at exceedingly low 

concentrations of iodine. It was concluded from the data of 

Gilbert and Marriott that the formation of the blue complex 

was actually a stepwise reaction in which the ratio of bound 
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conclusions. Nonetheless, the concept of a series of differ­

ent kind à' of polyiodine cores within a helix is one to be 

seriously considered. 

Due to the eminently successful efforts of Thorn a e_t al • 

(51) to fractionate the amylose series of dextrins into indi­

vidual members, it became possible to explore the iodine 

binding capacities of the individual polysaccharides from a 

DP of 4 up to a DP of 18 (Thoma and French, 52)• It was 

shown that even the very low molecular weight members did 

form a complex with triiodlde Ion. However, only malto-

nonaose and higher members appeared to enhance appreciably 

the visible spectrum of the trilodide ion. Spectrophoto­

metry evidence was also offered to indicate that some com­

plex was formed which exhibited a maximum in absorption at 

wavelengths Intermediate between that due to either trilodide 

or iodine itself. The potentiometrie data presented by these 

authors also indicated a loop-helix transition In the con­

formation of the polysaccharide-trilodide complex between 

DP 6 and DP 7. 

The significance of the present research with regard to 

the nature of the starch-iodine reaction will be discussed In 

a later section. 
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iodine to bound iodide was initially 2:1 and later changed to 

3:2. These investigators suggested that the blue complex was 

actually one in w.ich an amylose helix enclosed a linear 

polyiodine core whose basic repeating unit was Ig* 

A most important discovery was made by Mould and Synge 

(50) in the course of examining the electrophoretic properties 

of the amylose-iodine system - These authors succeeded in sep­

arating a solution containing iodine and amylose into three 

components of distinctly different anionic mobility and color 

by means of electrophoresis in both an agar bed and a cell 

packed with tiny glass beads. These three fractions were 

colored blue, red, and orange respectively. The molecular 

size of the amylose in each of these three fractions was deter­

mined by means of electrokinetic ultrafiltration, and it 

developed that the amylose which gave a blue complex was in 

the BP range 40-130, the amylose which gave a red complex 

was in the DP range 25-40, and the amylose which gave an 

orange complex was in the DP range 10-25. Using the differ­

ential potentiometric technique of Gilbert and Marriot, these 

investigators concluded that the blue complex contained an 

Iq polyiodlne core as previously reported. However, the red 

complex appeared to contain an 1^ polyiodlne core. Due to 

the serious experimental uncertainties encountered in iodine 

titrations at the exceedingly low iodine concentrations em­

ployed, however, it is rather difficult to evaluate such 
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EQUILIBRIA IN AQUEOUS SOLUTIONS OF IODINE AND IODIDE 

Hydrolysis of Iodine 

A « 
The absorption spectrum of a freshly prepared, neutral, 

aqueous solution of iodine is characterized by maxima at 

4600 A, £880 %, and 3520 %. However, if the water used as 

a solvent is Initially adjusted to a pH of 2 with either 

sulfuric or iodic acid, the only observable maximum is that 

which occurs at 4600 %• Such behavior is most simply under­

stood in terms of the hydrolysis of aqueous iodine according 

to the equations: 

Iglaq) + HOH " HgI0+ + I" K = 1.2 x 10"11 

Ig(aq) + HOH ̂  HIO + i" + H+ K = 5.4 x 10™13 

3Ig(aq) + 3HOH 10™ + 51" + 6H+ K = 7.1 x 10"48 

The iodide ion thus produced in the hydrolysis then 

becomes available to interact with the aqueous Iodine. It 

is this interaction which gives rise to the additional maxima 

In the ultraviolet absorption spectrum of aqueous iodine• 

The extent to which hydrolysis occurs and iodide ion Is pro­

duced depends upon the pH of the solution since H+ is one of 

the products of hydrolysis. Thus, In the presence of added 

acid, the additional maxima are not observed. The amount 

of iodide ion produced in neutral solutions, however, is not 

negligible as may be calculated from the equilibrium con­

stants which are due to Allen and Keefer (53). In any quanti-
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tative investigations, the effects of hydrolysis can only be 

ignored when they have been minimized by the addition of a 

suitable acid. Ideally, it would be desirable to determine 

experimentally the iodide ion activity in aqueous solutions 

containing both iodine and iodide if at all possible. 

Triiodlde Ion Formation 

The primary reaction between Ig and I~ in aqueous solu­

tions results in the formation of the triiodlde ion, 1^. 

This complex ion is very likely due to an ion-induced dipole 

type of interaction between the reacting species. An equi­

librium is rapidly established according to the equation 

I2(aq) + I~(aq) I~(aq) 

The thermodynamic equilibrium constant, Kg, for the 

formation of the triiodlde ion may be expressed in terms of 

the molar concentrations of the species involved and the 

corresponding molar activity coefficients. 

- - njfib • ̂  
Collecting the activity coefficients into a single fac­

tor, Fj, the formation constant may be represented as follows 

- (I3} 

'3 (IJ(I~) 
g* = ,7-s F3 (Eq. 2) 

At low ionic strength, fT , is independent of ionic 
2 
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strength and may ce taken as unity (33); furthermore, at any 

giver, ionic strength, fT- and fT_ may be expected to be very 
1 13 

nearly equal. Consequently, in dilute solutions of low ionic 

strength, one may assume as an excellent first approximation 

that Fg is very nearly unity. Thus, the evaluation of Kg is 

reduced to an estimation of the molar concentrations of the 

species involved at equilibrium. 

It is convenient for the purpose of describing equi­

libria between Ig, I-, and complex ions containing these 

species to distinguish between Ig molecules which are inti­

mately associated with I~ ions in a complex, and those which 

are not so involved. The former may be considered bound 

iodine, I g , while the latter may be thought of as free 

iodine, Ig. The molar concentrations of these different 

kinds of Iodine may be expressed as (1^)^ and (Ig) respec­

tively . The sum of the free and the bound iodine concentra­

tions is the total iodine molarity, (Ig)^. Analogous quan­

tities for expressing I" concentrations are (I~), (I-)^, and 

(I-)t for the free, bound, and total iodide molarities re­

spectively -

The most readily available quantities experiment ally are 

(1^)(Ig), and (I~)In the event that the reaction be­

tween Ig and I- leads to the formation of 1^ only, stolchi-

ometry requires that (lg)-D and (I~)b be Identical; and since 

the difference between (lg)t and (Ig) gives (Ig)-C, K3 may be 
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readily calculated from the following equation 

h = - tig'] / - (12>t + lI2>] ' (Eq. 3) 

It is this equation which he s been imst frequently used to 

evaluate Kg. 

Polyiodide Ion Formation 

It is v;ell known that the numerical value of the forma­

tion constant for Ig as determined by means of EG. -3 is in 

fact a true constant only at the lowest concentrations of Ig 

and 1~ - At higher I~ concentrations in particular, the 

"constant" so determined is observed to Increase rapidly 

with increasing Ig concentration. One may express Eq. 3 in 

terms of the concentrations of bound Ig, free Ig, and free I~ 

as in Eq. 4. It is then readily observed that the calculated 

value of Kg is directly proportional to the concentration of 

the bound Ig. 

Kg = (Ig)b / Clg)(I~) (Eq. 4) 

Thus, the steady increase in the calculated value for Kg may 

be attributed to a corresponding increase in the concentra­

tion of cound Ig. This of course suggests that complex Ion 

formation is not confined to the triiodlde stage, but that 

additional complex ions containing Ig and I~ are formed in 

aqueous solution. 

This explanation has received virtually universal 

acceptance for two reasons. Firstly, it is a recognized-
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i act ihat at sufficiently high total iodide concentration, 

it is possible to dissolve more than an eouimolar amount of 

iodine. Thus, polylodides of e type other than 1^, which 

contains iodine and iodide in equimolar quantities, would 

be required to satisfy the solubility data in terms of com­

plex ion formation. Secondly, several polylodides of the 

type Ir, such as l7, I0, and I~ have actually been crystal-2n+1 Of y 

llzed from aqueous solution and subjected to x-ray analysis. 

Thus, the actual existence of such polyiodides In solution 

would appear to be but a logical extension of well established 

conclusions regarding the solid state. 

However, attempts by Davies and Gwynne (33) to evaluate 

the importance of 1^ as a polyiodide In solutions of moderate 

iodide concentration have led to the somewhat unexpected con­

clusion that a polyiodide such as Ig would explain their 

observations in a much more satisfactory manner. It is 

therefore apparent that one cannot eliminate the possibility 

that poly.1odid.es of the type I^n+2 caiSh't also exist in aqueous 

solutions• In any event, it does seem likely that some type 

of polyiodide in addition to triiodlde would be required to 

provide a mechanism for the observed Increase in iodine solu­

bility at moderately high iodide concentrations. 
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THEORY 

Polyiodide Formation Function 

One may write the following generalized equation to rep­

resent the various interactions between Ig and I~ to form 

complex polyiodide ions in aqueous solutions. 

n Ig • ™ I" ̂  Ign+m (Eq- 5) 

If one neglects activity coefficients or assumes that 

under certain conditions such corrections will simply con­

stitute a constant multiplicative correction factor to the 

thermodynamic equilibrium constant, one may write the follow­

ing equation for the non-thermodynamic equilibrium constant 

governing the above reaction. 

K2n+m - / (I2)nU-)m (Eq. 6)B 

Thus, the equilibrium constants for the various reactions 

are defined simply by the specification of particular values 

of n and m. Evidence has been cited for the possible exis­

tence of ions of the type Ign+l 8110 ^"2n+2 in aqueous solu­

tions. It would, therefore, seem appropriate to establish 

a model which Included the possible existence of Ig, 1^, Ig, 

Ig, I?, Ig, and Ig. Since the species I~ is representative 

of the generalized (I~) ion as well as the I" _ ion type, 

aIn all expressions of equilibria, the ( ) ere used to 
indicate the molar concentration of the enclosed species. 
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It would seek logical to include i.e. IQ , in the model 

as well as the previously mentioned ions. 

The individual equilibrium constants are defined, there­

fore, by the following equation set.a 

K3 " (I") / d2) (I") Kr, = (I?) / 

1 H
 

to
"
 

'"c
vi 

H
 

«
 

II dp / d2) Ci-)2 Kq = dP / dg)3(i") 

K6 = CP / d2)2d") r9 = (Ig) / d2)4(r) 

K6 " dg) / d2)2d*)2 Kg = (Ig3 )/ d2)3d") 

(Eq. 7) 

It has already been mentioned that Kg as expressed in 

Eq. 4 can only be expected to remain a true equilibrium con­

stant if (Ig)b and (I~) are Identical. Consequently, If it 

is true that at higher concentrations of I~ the (Ig)^ in­

cludes Ig in the form of polylodides other than Ig, one 

would expect the calculated value of Kg to rise. Inasmuch 

as the quantity defined by Eq. 4 is in fact a measure of the 

extent to which further complex ion formation occurs, it Is 

useful to re-define this quantity. Let us, therefore, de­

fine this quantity as the polyiodide formation function, , 

according to the following equation. 

(£> - (18>b ' (I2.)(r) (Eq- 8) 

aSince both Ig and Ig3 have the same index for K, 
&n+m = 9, the former Is symbolized as Kg and the latter as 
simply Kg to avoid ambiguity. 
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In view of the fact that the (Ig^b may be expressed in 

terms of the molar concentrations of the complex ions con­

taining Ig, as in Eq. S, it is possible to relate (^) to the 

equilibrium constants defined by Eq. 7. 

(12}b = n X Z^2n+m' (Eq' 9) 
n m 

By combining Eq. 6 and Eq. 9, and substituting into 

Eq. 6 the expression thus obtained for (lg)b as a function 

of the molar concentrations of reactants and equilibrium con­

stants, one obtains the following expression for the poly­

iodide formation function in terms of measurable quantities, 

(Ig) and (I~), and the various equilibrium constants. It Is, 

therefore, possible In principle to obtain estimates of these 

constants by curve-fitting. 

à)= I 7 " K2n*m (Eq- 10) 
n m 

It is useful to examine Eq. 10 in its expanded form in 

order to observe certain useful properties of this function. 

2 0 = K3  + K4(I") * 2 K5(Ig) + 2 KgdgHl") + 3 K?( lg) 

+ 3 K8(I  )2(I") + 4 K9(Ig)3  
+  3 K (I  )2(I")2  

(Eq. 11) 

One may examine the values approached by as (Ig), (I-), or 

both approach zero since such values are experiment ally 

accessible. These values may be expressed by the following 
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equations. 

(pd^j—o - K3 + K4C1") (Eq- 12) 

0 ) = K3 + 2 1(5(12) + 3 + 4 Kgdg)̂  (SS" 13) 

0 (I2),(I") -0 " K3 (Eq. 14) 

The relationships expressed in Eq. 12, Eq. 13, and 

Eq. 14 will allow a simplification of the model in terms of 

the ionic species which must be considered If such simplifi­

cation is at all possible. Thus, for example, one would 

include 1^ in a model only if (^)^ ̂ x ^ Q did in fact prove to 

be a linear function of (l~) as predicted by Eq. 12- The 

usefulness of these properties of(^) in obtaining preliminary 

estimates of the various constants by graphical means is an­

other attractive feature of this function. 

Distribution Law 

If to a system of two immiscible liquids a third sub­

stance is added which is itself soluble in both liquids, the 

substance is found to distribute itself between the two 

liquid phases in a definite manner. An exact mathematical 

expression of this statement may be derived from a consider­

ation of the requirement that the chemical potential, U, of 

a sucstance distributed between two phases must be Identical 

in each phase at equilibrium. Thus, In the first liquid 

phase, the chemical potential may be expressed by 
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U1 = U° * HT In a (Eq, 15} 

and in the second liquid phase, the chemical potential is 

similarly given by 

U2 = Ug + HT In a (Ec. 16) 

where and Ug are the chemical potentials of the solute in 

the standard state and are, therefore, constants at any given 

temperature. The activities of the solute in the two phases 

are given by a^ and a^ respectively. Since at equilibrium 

Uj = Ug, it follows that at any given temperature and pres­

sure 

al ̂  a2 = constant (Eq. 17) 

This exact expression of the distribution law may be put 

into an approximate form for practical purposes. If the 

solution behaves ideally in the sense that either Henry's 

Law or Raoult1 s Law may be applied, then the activities may 

be replaced by the appropriate mole fractions. Furthermore, 

if the solutions are dilute, the ratio of the mole fractions 

may be approximated by the ratio of the concentrations ex­

pressed in moles per liter of solution. Thus, the distribu­

tion law may be expressed as in Eq. 18. 

ci / c2 = constant = K (Eq. 18) 

This form of the distribution law is based upon the assump­

tions of dilute solution and-ideal behavior; thus, as one of 

the phases becomes non-ideal in this respect, the experimental 
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value of K will ce observed to change. If one knows the 

value of K at any given concentration of solute In one of 

the phases, therefore, it is possible to calculate the con­

centration of the solute in the other phase at equilibrium. 

Thus the distribution law may be applied to the parti­

tioning of Ig between an aqueous phase containing I~ and a 

CC14 phase In which the Ig is also soluble. Since I and 

polyiodide complex ions are not soluble in CCI4, one may 

estimate the free Ig concentration in the aqueous phase from 

knowledge of the distribution coefficient of Ig for this 

system even though consideracle Ig may be present in the 

form of complex ions. 

Potentiometry 

The reduction occurring at the reversible iodine elec­

trode may be written as 

Ig + 2 e~ 2 I™ (Eq. 19) 

The electrode potential, E, due to this process may be ex­

pressed by the Kernst equation as follows-

E = E° - H In (I-)* f2_ / (Ig) fI (Eq. 20) 

where, R is the universal gas constant, 

1 is the absolute temperature, 

F is the Faraday constant, 
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E° is the standard reduction potential of the aqueous 

iodine electrode, 

f^_ is the molar activity coefficient of I , and 

fT is the molar activity coefficient of Ir. 
x2 * 

For a concentration cell consisting of two iodine elec­

trodes immersed in solutions brought into electrical contact 

by means of a salt bridge, the standard reduction potential 

is exactly cancelled by the standard oxidation potential in 

the expression for the emf of such a cell. If in addition, 

one may assume that the molar activity coefficients for the 

12 and I are the same in each half-cell, these factors will 

also disappear from the expression for the emf due to can­

cellation. Thus, the emf of such a cell nay be given as a 

simple function of the molar concentrations of the Ig and I~ 

in the two half-cells as follows. 

E = || In (I2)1 (I-)g / (I™)2 (I2)2 (Eq. 21) 

where the subscripts refer to the different half-cells. 

If the I2 ajid. I- concentrations are known for one of 

the half-cells, a reference half-cell, but are unknown in the 

other half-cell, Eq. 21 may be rewritten as follows: 

E = ̂  log Q, + £ log (I")2 / (I2) (Eq. 22) 

where, 1 = 2.303 || , 

_ £ 
Q = (Ig) / (I ) in the reference half-cell, and 
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(I-) and (Ig) are the iodide and iodine molarities in 

the unknown half-cell. 

Solving Eq. 22 for (I-), one obtains 

(I-) = 10V2 ™s - 106 e - l0g U2) (Eq. 2.3) 

It is, therefore, evident that from a measurement of E for 

any solution containing Ig and I- In equilibrium against a 

reference half-cell, It is possible to estimate (I~) if one 

has an independent estimate of (Ig). Inasmuch as (Ig) may 

be estimated by suitable application of the distribution law, 

the estimation of (I-) follows directly upon the measurement 

of the emf of such solutions against an appropriate reference 

solution. 
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MATERIALS AND METHODS 

Determination of (Ig) 

The concentration of free iodine in an aqueous solution 

containing an appreciable amount of iodide ion cannot in 

general be determined by direct titration if there has been 

considerable incorporation of iodine Into polyiodide ions 

which are in rapid, reversible equilibrium v.'ith the free 

iodine • Thus, one must have recourse to some indirect method 

for the determination of free iodine in such systems• 

One such indirect method is the distribution of iodine 

between the phase of interest, and a second immiscible liquid 

phase which may then be used as a reference phase. In order 

to apply such a technique, It is necessary to have some 

knowledge of the appropriate distribution coefficient. 

Since the aqueous phase of interest will in general con­

tain iodide and polyiodide salts, it is essential that the 

distribution coefficient used to relate the iodine concen­

tration in one phase to that in the other be one which takes 

into account the presence of such salts. Furthermore, the 

hydrolysis of iodine must be taken Into account or minimized 

during the determination of the distribution coefficient. 

Inasmuch as the aqueous phases of Interest contain dis­

solved salts at a constant ionic strength of 2.00, the appro­

priate distribution coefficient would appear to be one be­
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tween a reference phase such as CC14 and an aqueous phase 

containing an inert salt at an ionic strength of 2.00. By 

an inert salt is meant one -which does not undergo specific 

interactions with iodine. The use of KK03 as a suitable Inert 

salt is suggested by the fact that the solubility of iodine 

in 2 k Ki\03 when corrected for the volume occupied by the 

salt and cationic hydration is essentially identical with 

the solubility of iodine in water alone. Since KNOg is used 

as a diluent salt for the maintenance of constant ionic 

strength in the polyiodide solutions of interest, it Is of 

course desirable to use this same diluent salt for maintenance 

of constant ionic strength in the determination of the dis­

tribution coefficient. The use of KNOg as a diluent salt 

In the polyiodide containing solutions is dictated by the 

fact that it is a 1-1 electrolyte as is KI, the iodide salt 

used in these solutions, and by the desirability of introduc­

ing as few different kinds of cations as possible. The 

presence of dilute sulfuric acid in the aqueous phase during 

the determination of the distribution coefficient Is also 

desirable to repress the hydrolysis of iodine. 

The appropriate distribution coefficient, therefore, is 

that for iodine distributed between CC14 and an aqueous phase 

containing 2.00 M KNOg and .001 M H^SO^. The experimental 

determination of this distribution coefficient as a function 

of iodine concentration in the CCI4 phase is discussed in a 
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later section. 

Determination of (l~) 

In order to make use of the po tentiometrie method to 

determine tne (I~) by means of Eq.2? , one must first estab­

lish the fact that a reference electrode such as the one ' 

described does indeed exist. The use of such a concentra­

tion cell under the conditions of constant ionic strength 

also gives some justification to the cancellation of activity 

coefficients required in the derivation of Eq. 21. 

In order to use an iodine electrode as a reference elec­

trode, it would seem that some estimation of the polyiodide 

formation function is necessary in order to obtain an esti­

mate of (Ig) and (I~); thus, it would appear that one needs 

0 to octaln (I-) and vice versa. Such a situation might be 

met by an Iterative estimation of the quantities Involved; 

however, a more direct alternative is available. 

Consider the following definition of K*, 

K* = (Ig)b / (Ig) [(I~)t - (Ig)b] (Eq. 24) 

From the definition of (^) In Eq. 8, it Is clear that 

K* 

0 = (I") / (I~)t - (Ig)b (Eq. 25) 

Thus, to the extent that (I*~)t - (Ig)b is an estimate 

of (I~), K* and(^) estimate the same thing. It Is evident 

also that as (Ig)b approaches zero, (l~) and (I~)% become 
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more and core identical; thus, as (Ig) approaches zero, 

( Ig)b must also approach zero and K* must approach Since 

the estimation of K* involves only the determination of (Ig), 

(I~)t, and (Ig), it is possible to obtain a reliable estimate 

of at (Ig) = zero by a graphical plot of K* against (Ig). 

Furthermore, a value for K* at very low (Ig) may be obtained 

directly from such a graph and could be reasonably expected 

to be a reliable estimate of (^) at this Ig concentration. 

Thus, in principle one may use such a solution as a refer­

ence solution for the potentiometric determination of (I-) 

in more concentrated solutions. 

The actual experimental determination of (l~) by such 

means is described in a later section. 

Determination of (Ig)b 

The determination of (lg)b proceeds immediately from the 

following Identity. 

(Ig)b = (I£)t - (Ig) (Eq. 26) 

Since one may obtain an estimate of (Ig) from distribution 

methods, the estimation of (Ig)-D follows immediately upon 

the determination of (lg)f This quantity may be obtained 

simply by the titration of the aqueous phase with a reagent 

such as sodium thiosulphate which reacts quantitatively with 

Ig. The experimental determination of this quantity is dis­

cussed in a later section. 
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Multiple Regression Analysis 

The expanded form of the polyiodide formation function 

given in Eq. 11 suggests at once that a general multiple 

constants for polyiodide formation and precise values of (Ig) 

and (I~) would provide a powerful method for the estimation 

of these equilibrium constants. In addition, the usuel 

statistical procedures may be used to determine whether or 

not any given estimate of an equilibrium constant is sig­

nificantly different from zero• In other words, it is pos­

sible to determine simultaneously whether or not any of the 

polylodides included in the model exist, and the formation 

constants for those which appear to exist. 

In order to elaborate upon the applicability of multiple 

regression analysis, it is useful to make the following iden­

tifications with the quantities appearing in Eq. 11. 

Let Kg - Aq 3 K? = A^ 

function of the equilibrium 

2 K6  = A3 

(I ) -  x2_ 

( I _ ) ( I 2 )  = x3 

(I")(I2)2 , XB 

(Ig)3 = x7 

3 Kg = A5  

3 Kg = AQ 

4 Kg = Ay 

(Ig) = Xg 

( I g ) 2  =  x 4  

(Eq. 27) 

(l-)2(Ig)2 = 
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0 

By making the above identifications, it is obvious that 

:q. 11 may be expressed as follows. 

= Aq + A1 x^ + Ag Xg + A3 X3 + A4 x4 + A& x5 

+ Ag Xg + Ay x? (Eq. 28) 

Tnis expression may be more conveniently expressed as 

(J) = Ao + Y. Ai Xi (Eq. 29) 
i 

where 1=1, 2, .., 7. 

Furthermore, if one makes several observations of (J^) and 

the x^, say n observations, one would have the set of equa­

tions, 

0 j - AQj + ^2 x^j (Eq. 30) 
1 

where j = 1, 2, n. In this form, one may Immediately 

recognize the general linear hypothesis where the x^j are 

constants and the A^ are regression coefficients to be esti­

mated from observations of the Ĉ )j and Xjj • 

Of course, it is true that the x^j are not constants 

which may be fixed at a definite set of values during the 

experiment; however, one may conceptually consider the x^j 

to be experimentally determinable with such a high degree of 

precision that repetition would lead to exactly the same value 

for the Xjj - This is an approximation which may only be 

approached and never reached experimentally, but It is none­

theless extremely useful to explore the consequences of such 
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an approximation. 

Low Molecular Weight Amylose 

The low molecular weight amylose used in the electro-

phoretic fractionation experiments was obtained by the acid 

hydrolysis of Superlose, a commercially available amylose 

obtained from Stein and Hall Co- The Superlo se was dispersed 

in 9 K HC1 at ice temperatures, and the hydrolysis was allowed 

to proceed until the hydrolysate gave a plum-colored complex 

upon the addition of aqueous iodine. The hydro lysis was then 

arrested by neutralization with anhydrous NaAc and the salts 

were tnen removed from the hydro lysa te by repeated dialysis 

and vacuum concentration at room temperature. The low molecu­

lar weight amylose was recovered from solution by precipita­

tion with acetone at room temperature. 

Fractionation of Low Molecular Weight Amylose 

The separation of amylose-polyiodide complexes Into three 

fractions with different iodine-staining properties was 

achieved through an adaptation of the procedure developed by 

kould and Synge (50). A Beckman Model CP hanging-curtain 

electrophoresis apparatus was employed In conjunction with a 

glass curtain fabricated from Whatman G-F/B glass fiber paper. 

The supporting electrolyte employed was an acetate buffer 

of pH 4.6, ionic strength .04, and contained .002 M KI and 
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a 0.06/:. solution of low molecular weight amy lose in the sup­

porting electrolyte. Upon Impressing s potential difference 

oi c-30 v. across the curtain, the applied solution was sep­

arated into tnree fractions of distinctly different color. 

Blue, red, and orange-yellow cands were readily observed to 

move down the curtain with the flow of the buffer. The blue 

and red fractions were actually separated by about 2 cm at 

the point of collection while the bands themselves were about 

4 cm in width at this point. Ko actual "window" could be 

observed between the red and orange-yellow fractions. These 

fractions were collected and their absorption spectra deter­

mined . The spectra are discussed in a later section. 
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EXPERIMENTAL 

Distribution Coefficient 

The distribution coefficient, Kd, for Ig between CC14 and 

aqueous 2 k KNO? containing .001 K HgSO^ was determined at 

25 °C by the equilibration of 100 cc of CC14 and 100 cc of 

the acidified 2 k KKO3 with varying amounts of added Ig. The 

reagents used throughout were kallinckrodt analytical reagent 

grade chemicals. These were used without further purification 

except for the CC14 which was redistilled immediately prior 

to use• The water used in the aqueous phase was obtained by 

redistillation of distilled water from an alkaline KMnO^ 

solution. 

The two liquids were introduced into 250 cc glass-

stoppered flasks and solid Ig was added. From preliminary 

data, it was possible to add an amount of Ig sufficient for 

the approximate establishment of any desired Ig concentration 

in the CC14 phase. Thus, several determinations of were 

made at different IQ concentrations between 4 x 10 M and c  —  

1.1 x 10-1 k in the CC14 phase. This covered a concentra­

tion range fro:- very dilute solutions to saturated solutions 

of I g -

After introduction of the Ig into the flasks, they were 

stoppered and subjected to the action of a wrist-action shaker 

until the Ig had dissolved completely in all solutions less 
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than saturated with respect to 1^. The flasks were then 

placed in a water bath thermosts tea st 25 + .02 °C and 

brought to equilibrium at this temperature. It was determined 

that even after £ weeks of équilibration, during which time 

the fxasks were frequently agitated for extended periods of 

time by a wrist-action shaker, sume of the more concentrated 

solutions had not yet achieved equilibrium. However, after 

3 weeks one could not detect any further changes in the ratio 

of Ig concentrations in the two phases. 

The Ig concentration in the liquid phases was determined 

cy titration of allquots withdrawn by means of a volumetric 

pipette with standardized solutions of sodium thiosulphate. 

The normality of the tniosuxphate solution used in titration 

was chosen so that the titrating volume would be in the 

range 20 to -30 cc whenever possible. All standard solutions 

were frequently standardized against a primary standard which 

consisted of a carefully prepared solution of KIO3 which was 

allowed to liberate Ig from KI in acid solutions. Standardiza­

tion was acnieved by direct titration of the Ig liberated 

with the sodium thiosulphate solutions. 

The aliquots withdrawn from the sample flasks were imme­

diately pipetted into titration flasks containing a small 

volume of water to which about .5 g of KI had been added. 

The presence of KI helped to minimize the loss of Ig by 

volatilization during the titrations and, in the case of 
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the CC14 phases, it also increased greatly the rate at which 

the Ig could be extracted into the aqueous phase for titra­

tion . A magnetic stirrer was also used to speed up the rate 

of extraction of Ig into the aqueous 3.hase by providing a 

mechanism for the intimate mixing and constant renewal of 

surfaces oetween the phases. 

The Ig was titrated directly in the aqueous phase with 

a standardized solution of sodium thiosulphate. Duplicate 

titrations agreed to within 0-10 cc. The concentration of Ig 

in either phase was then calculated from the following equa­

tion . 

(Ig) = K x Vt / 2 Vs (Eq. 31) 

where, K = the normality of the titrating solution 

Vf. = the average titrating volume 

V = the volume of the sample aliquot 

(I) = the molar concentration of (Ig) in the sample. 

The distribution coefficient, K^, was then calculated 

from the following definition. 

Ka = <yc / (Eo- 32) 
where, (Ig)c is the molar concentration of Ig in the CCl^ 

phase, 

(Ig)£ is the molar concentration of Ig in the aqueous 

phase -

Inasmuch as is defined in terms of molar concentra­

tions, one might expect that will be a function of the Ig 
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concentration. Thus, has been determined for several 

values of ( 1^,)c. The results of this determination are tabu­

lated in Table 3 and displayed graphically in Fig. 1. 

Tne solubility of Ig in 2 K KNO^ as determined in this 

experiment Is in excellent agreement with the value obtained 

by Kiss and Urmanczy (54), and if corrected for the volume 

occupied by the KLO, s.nd for cationic hydration is very nearly 

identical to tne solubility of Ig in water alone. Thus, It 

would appear that the KKO-? is essentially an inert diluent in 

tne system. 

Estimation of 0, for the Reference Electrode 

It has been pointed out that in order to establish a 

suitable reference electrode for use in a concentration cell, 

one must obtain some estimate of(^) in the reference solution. 

The most direct approach to this problem has been outlined 

previously and involves the determination of K* as defined 

in Ec. c4. In order to obtain values for K* experimentally, 

one must h:\ve estimates of (I ) t, (Ig)-D, and (Ig/• 

It is clear from Eq. lie that if the formation of 1% did 

in fact occur in aqueous solutions, the value of approached 

as (Ig) approaches zero should be a linear function of (I-)-

Since K* is an approximation to ^^)in the same limit, it is 

to be expected that the same functional relationship would 

exist between k* and (I-). It was necessary, therefore, to 
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j-'aolc 3. Ditiûrluuuiuii Cyefi icieiil iur xo between CCi4 snd 
aqueous 2 H KKO% containing .001 K H0SO4 at 
25 + 0.02 °C 

(Igicci* * 1°^ (Vaq x  l o 4  Ka 

0.3913 0.3833 102.os 

1.5354 1.5020 102.2g 

1.9611 1.9283 102.?4 

2.3557 2.3249 102.6^ 

2.7104 2.6377 102.7g 

3.1492 3.0563 103.Og 

3.5011 3.3665 108.3g 

4.3479 4.1954 IO3.63 

5.1699 5.0121 104.7% 

5.6621 5.5533 105.5g 

6.6538 6.2316 106.7g 

7.1386 6.6505 107.3g 

8.4866 7.8308 108.3? 

8.9857 8.30.38 108.2^ 

9.6909 8.9132 108.7g 

10.6859 9.8426 108.5? 

11.4863 10.5435 IO6.94 
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Fig. 1. Distribution coefficient, K^, of Ig between CC14 
and an aqueous 2 K KNÔ  solution containing 0.001 
M Ĥ S04 at 25 + .02 °C 
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ae termine K" al several concentra Liox^s 01 KI ix. order uu allow 

for this possibility. 

Several aqueous solutions were prepared containing vary­

ing amounts oi' KI from .05 k up to scout 1.0 K. Sufficient 

KKO3 was added to these solutions to bring them all to an 

ionic strength of 2•00. Equilibration of 100 cc of each of 

the aqueous solutions with 100 cc of CC14 and varying amounts 

of 1^ was performed in tne same manner described for the 

determination of the distribution coefficient. Kallinckrodt 

analytical reagent grade chemicals were used throughout 

these experiments without further purification. 

The concentration of KI in the aqueous phase of these 

solutions was determined by titration with standard AgKO^ 

solutions using eosir. as an indicator. These titrations were 

performed in subdued light since the precipitated Agi is quite 

photosensitive. The molar concentration of the KI solutions 

so determined was in extremely good agreement with the molar 

concentration calculated from the weight of KI used to pre-

prre the solution. 

The molar concentration of the free Ir in the aqueous 

phase was determined from the experimentally obtained molar 

concentration of 1% in the CCl^ phase arid the corresponding 

distribution coefficient obtained from Fig. 1. The molar 

concentration of the Ir, in the CCl^ phase was obtained in the 

manner described for the determination of the distribution 
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ïacle 4. K* as b function of (%%.) for several KI concentra­
tions at cc -r -Uk. VU 

(1%)^ 10% (I%)C % 10% (I^)G. X 10* % IO% K* 

( I ).j. = .049424, ionic strength = 2.00 

V.11385 L.31405 0.30789 0.11077 743.5 
v.11737 0.32335 0.31702 0.11420 745.0 
0.50717 0.66070 0.86174 0.29855 744.9 
0.51677 0.910̂ 7 0.89068 0.30786 744.8 
U.49791 1.48&ÙC 1.44643 0.46343 747.3 

0.51768 1.54757 1.5..84 0.50275 747.9 
u 66764 2.v52l3 2.00987 0.64754 748.9 
0.64760 1.96676 1.93832 0.62821 750.0 
v.84194 2.69913 2.6c433 0.61570 751.9 
u.63340 2-67359 2-60077 0.80739 745 .5 

1.00574 3.34691 5.24626 0 97316 753.9 
1.0c032 3.3998% 3.29600 0.98736 756.1 
1.16c73 4.01633 3.68051 1.12393 757.1 
1.18930 4.15277 4.00074 1.14929 756.0 
i.%8990 4.60̂ 7o 4.42593 1.24556 759.8 

(I")t = .096968, ionic streng - th = 2.00 

0.̂ 6516 0.36566 0.35869 0.26157 756.7 
0.̂ 3̂ 56 0.32165 0.31534 0.22950 752.7 
0.96436 1.47028 1.43582 0.9 7000 755.6 
1.<3346 1.687%3 1.64030 1.21251 758 .5 
J. • 5c656 40872 2.34539 1.49711 759.6 

1.639LC 2.61735 2.54606 1.61379 765.0 
Z.06054 3.46638 3.35920 2.03194 766.9 
b•c<2ll 3.60751 3.67675 2.16532 770.1 
b.55040 4.55019 4.57939 c.51661 778.4 
b.59760 4.65391 4.47707 2.55283 776.2 

96760 5.6524c 5.36639 2.93361 781.5 
3.07775 5.9̂ 466 5.61600 3.02159 782.3 
3.37340 6.84499 6.39420 3.30946 785.5 
3.46503 7.06556 6.60965 3.39893 791.1 
3.75373 S.03%64 7.42045 3.67952 797.3 
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coefficient. Duplicate titrations pureed to within 0.1 cc in 

every instance. 

The total I g concentration in the aqueous phase was also 

determined as described in the section on the determination 

of tne distribution coefficient. From the identity expressed 

in Eq. vJ, the (1^)c vas obtained from the difference between 

(I. and ( Ir; ) . Having thus determined the values for (I-)*., 

(I^t and (Ir;), it was possible to calculate K* by means of 

Eq. 24. The results of these determinations end calculations 

are tabulated in Tacle 4. 

In order to use tnis data to provide a suitable descrip­

tion of a solution which may be used as a reference electrode 

stanaarc, it is sufficient to decide upon an arbitrary but 

low free 1^ concentration for the reference solution. One 

may then octain a fairly precise estimate of K*, and there­

fore directly from Fig. c. It is then possible to calcu­

late the amount of I^ wnich would have to be dissolved in the 

solutions of KI and KKO^ to achieve this concentration. 

Since the value of K* changes only very slightly with (Ig) at 

very low concentrations, only a close approximation tc the 

calculated amount of total I^ required need be achieved. The 

exact concentration of (1^;t in these solutions could be ob­

tained by titration. 

Sucn a procedure was adopted by choosing a target concen­

tration of 1 x 10"~ K free I^ for the reference solutions. 
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~ % 
)c * 10̂  -(It)a x lû4 ( I %  )'c % 10̂  K* 

(1™ = 0 . %969c:, ionic streng th ; 

o
 
o
 XI II 

V .67596 .J .30397 0.29501 0 .67 300 778.1 
0 . S V o9 S 0 .%8241 0.27687 0 .62311 774.1 
% .15748 0 .98615 0.98644 % .14761 790.3 
1 .99%17 . 0 .93_i_6o 0.91159 1 .9x306 785.0 
•3 .7%557 1 .B06%7 1.76135 5 .70795 810.0 

•3 .44594 1 .5^700 1.6_634 3 .43066 803.1 
c • C-} C ̂ sj .65798 %.59531 5 .21005 612.8 
4 .8566c % .43977 2.37553 4 .83287 818.2 
G .49%54 3 .43180 3.32378 6 .45940 836.3 
6 • 7-3179 3 .6041% 3.48729 6 .69591 835.0 

7 .77145 4 .29968 4.14627 7 .72999 846.7 
6 .%1466 4 .oôoôl 4.41367 6 .17054 860.0 
9 .17594 0 .35161 5.11157 9 .12482 867.8 
9 .64638- 5 .70414 5.43769 9 .59200 677.4 
10 .39802 c .38422 5.99739 10 .33811 890.5 

(1™ = U.49453, ionic streng th = 

o
 
o
 A? Il 

1  •l%0c5 0 .2944% 0.2865g 1 .11776 800.5 
1 .14497 0 .30v6c 0 %9476 1 .14202 802.0 
3 .6%947 0 .97772 0 956%0 3 .72903 826.0 
3 .73883 1 .00487 0.98276 3 .72900 829.9 
Ô .10U86 1 .66470 1.6452% g .08441 852-7 

G .38687 1 .75499 1.7150% .36974 863.1 
6 • 44 ci/ % % .38828 2.32775 .42 3 61 861.9 
G .99475 % .574%% %.505 32 6 .96970 684.4 
10 .77%61 3 •154%o 3.06088 10 74200 906.6 
11 .5%^69 •5 .40̂ 60 3.29675 11 .48873 918.0 

1-3 .10846 3 .99166 3.85670 13 .00991 931.4 
13 . 51:31% 4 .11367 3.92092 13 .47-341 943.0 
le .3507% 4 .661-lô 4.68219 15 .30390 957.1 
15 .68364 4 .96872 4.76616 15 .63598 970.1 
17 .63604 5 .8%398 5.5%036 17 .58289 999.4 
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'.scie 4. (Cnr.vlrve.T ) 

i .  x 10% X 10^ (I2)a x 104 (lc )c * K* 

(i -;  ) ^ = U .  69c90, ionic strength = = 2.00 

± .704 59 0.311%c 0 3051. 1 .70134 8c5 .0 
1 .56640 0.26437 0.27879 1 .56361 826 .1 
G .GlGvC 1.11076 1.06685 5 .99965 672 • 2 

.C&801 1.20513 1.17901 .5162c 880 .4 
lu .cooc? 1.92030 1.87255 10 .%469c 926 .8 

S .7^775 1.64591 1.80089 9 .7797c 91c . 5 
14 .c997c 2•78955 2.71095 14 .27264 957 .0 
1-3 .cc27d C-C4111 %.47310 15 .19805 2 51 .4 
16 .66416 3.70064 3.63816 16 .64776 1012 • 1  
1? .49^57 3.46713 3.37900 17 .46c56 997 .1 

cc .9 50cô 4.86640 4.67249 %2 .88384 1055 .4 
z5 .76256 5.0U016 4.79632 23 .71462 1084 .9 
ce .66910 5.91360 5.60797 2c .81302 1125 . 6 
c? .7c546 6.ccl75 5.866=1 27 .69661 1135 .0 
•51 .1500c 7 .  54 3 16 .62769 31 .06174- 1190 .1 

(R ̂  = 0.64077, ionic streng th : u ro
 
o
 
o
 

.14320 0 51z50 . . .30637 2 .14014 851 . 9 
1 • 9o735 0.%=617 0 26056 1 .94455 848 .3 
ô .91579 1.01555 0.99 520 6 .90566 901 .0 
7 .397c5 1.08431 1.06045 7 .38692 908 .3 
il .61030 1.75355 1.71445 11 .79316 9 52 .7 

1 5 •  c0 cOc 1.9600% 1.91126 13 .16291 972 .9 
15 .4̂ 460 2.48510 2.41976 .43060 1003 .5 
15 .74794 c•37Bc5 c.3157c 15 •  7c4 78 993 .4 
-A .61416 3.c9733 3.19974 21 .56218 1079 .3 
cl .9o666 3.41613 3.31161 21 .95556 1067 • 2 

cv .74360 4.077cz 3.93940 c5 .70441 1117 .6 
c4 .74949 4.c0459 4.0565% 24 .7089 5 1126 .0 
•51 .16160 5.c07c5 4.96540 31 .11175 1176 .3 
5 c  .606 = 0 5.5330c 5.c7706 32 .75403 1209 .4 
35 .c6454 c.08606 5.75cl6 35 .L0699 1245 .4 
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i acie 4 . f Cor. tii.ued ) 

(I )c % ̂  ( I % }  r. % 10̂  cx (It )% x 10̂  K* 

(I" h ' = 0.96%15, ion ic streng th : 

o
 
o
 II 

% .5.356 c 0 .3̂ 631 0 30030 2 • 53265 881 .4 
6 .066o3 0 .73654 0. 72104 g .06132 91% .2 
7 .91390 0 .96161 0. 94111 7 .90449 930 .0 
d .41%6o 1 .15497 1. 109̂ 5 9 .40175 953 .7 

10 .57514 1 .%6406 1. 25519 10 .56%53 960 .0 

1-3 .63795 1 .6755% l J_ • 63465 13 •5%151 1001 .9 
14 .79017 1 .60393 1. 75995 14 .77257 1005 .9 
19 .00%c4 % .331%6 2-27105 ic .97993 1054 .7 
19 .80901 % .4%079 a. • 35715 19 .78544 1070 . 2 
%4 .%044z 2 .99787 c • 91197 %4 .17536 1121 .3 

%c .673o7 3 .%%495 -5. 1%950 %5 .64206 1141 .0 
3 c .01567 3 .998%5 3. 86304 31 .33053 1212 . 6 
31 .94675 4 •11807 3 . 97497 31 .97524 1214 .4 
39 .15974 5 .3099% 5. 07641 39 .10896 1303 .4 
40 .70396 5 .51408 5. 25902 40 .65137 1342 .6 

The actual concentration of total iodine added was determined 

cy direct titration with standard sodium thiosulphrte. The KI 

solutions employed were the same solutions used in the deter­

mination or K* at the various total KI concentrations. 

The actual concentration of free I^ and free I- were then 

calculated from the concentration of total KI, total Î , and 

the approprif te value for K* obtained from Fig. 2. From these 

calculated values of (1^) and (I-), the quantity, Q, defined 

in Iq. was readily computed. The results of these compu­

tations and the date pertaining to them are tabulated in 

I a c 1 e c. 
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Fig. 2 -  K* as a function of the free iodine concentration 
in moles/liter for'solutions of ionic strength 
2.00 at 25 + .02 °C 

A = 0.049898 k KI 

ti = 0.098988 M KI 

C = 0.29696 k KI 

D = 0.494 53 k KI 

E = 0.69290 M KI 

F = 0.84077 M KI 

G = 0.98216 k KI 
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'l'aube o. Composition of reference electrode solutions51 

U")t (I. )t X 104 U 
K«D d̂ )c x 104 (1%) x icf (I~) (I")2/(I2 

.049494 83.069 74 5 8.08 54 c-2545 .048686 105.079 

.uyQ9tio 7.9071 750 7.8005 1.066 .098208 904.767 

.L9696 L4.035 77^ 23.9^82 1.052 .29457 8248.24 

.494^5 39.825 798 39.7246 1.015 .49056 23709.3 

58.udo ti l? 57.9897 1.053 .68710 45702.5 

.84077 70.752 857 70.6505 1 • v. l2 .8 5371 58683.0 

.btiLlÔ 83.91% 853 83.8115 1.009 .97378 9 5978.9 

aAll solutions contain sufficient KNO, to establish an ionic strength, of 2.00. 

D0utained from Fig. £ for (1%) = 1 x 10""̂  k. 
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of ûr»rr, i r «z T 1 r\ r, r\ "f 1~ o u > lui n o w v 

IL :V S S necessary to determine ( I g ) c, (Ig), and (I~) in 

order to make use oi' Eq. £ te calculate^), the polyiodiae 

formation function. ïnese determinations were conducted in 

solutions of varying total KI and total Ig concentration in 

order to accumulate appropriate data for the multiple regres­

sion analysis previously descriced-

me same method was employed for the determination of 

(I. ) and ( lr.) as that descriced for the determination of K*. C ^ C, 

Since the determination of K* as g function of (Ig) allowed 

the estimation ofin dilute solutions of Ig in aqueous KI, 

it was possible to prep-re solutions of KI and Ig suitable 

for use as reference electrode electrolytes for the po tenso­

metric determination of (l~) (see preceding section). 

The properties of the standard ceil solutions ?re de­

scriced in Tacle 5. It should ce noted that a different 

standard solution was prepared for the several different total 

KI concentrations encountered in these investigations. The 

ionic strength of all solutions was adjusted to 2.00. These 

measures were taaen to minimize any effects which might be 

due to an imcalance in tne salt content of the two half-cells 

under observation. 

me actual ce_LL assemcly consisted of two glass electrode 

vessels of 50 cc capacity, one for the reference electrode 

and one for tne working electrode. The electrodes themselves 
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v.'ere Pu LU *ton electrodes sealed In glass obtained from Bec>-

msn Ins -ruments Inc. Electrical contact between the tv;o half-

ceiis Vf.s made through a salt bridge containing 2 M KNO^. 

Actual c jn vact cetween the bridge solution and the cell 

electrolyse was made through asbestos fibers sealed into the 

ends of the bridge. The electrode and bridge lead entered 

the cell vessel through a rubber stopper which fit tightly 

into the top of the vessel • The cell vessels were thermo­

stat ea in s water-cath maintained at 25 + .02 °C. during 

measurements. The potential difference between the two Pt 

electrodes was obtained by means of a Leeds & Korthrup Type K 

potentiometer in conjunction with a ballistic type galvano­

meter which served as s null detector. 

The actual measurements were obtained by placing 40 cc 

of the appropriate reference solution in one electrode vessel 

and 40 cc of the solution under investigation in the other 

electrode vessel. Both the reference solution and the solu­

tion under investigation had been thermostated at the tempera­

ture of measurement crior to transfer to the electrode vessels 

which were also immersed in the same thermostat. The emf of 

the cell thus obtained was reproducible to within 0.1 mv at 

low (Ig) and within 0.5 mv at high (Ig)- The measurements of 

emf were made just before the titration data was obtained on 

the solutions under investigation and the CC1A phase with 

which they had been equilibrated. The (I~) was calculated by 
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a.car.s of -c . 2-5 from the value of ̂  for the reference solu­

tion, ( Jrj, and the measured emf. It was then possible to 

gated in t.. is manner ere tabulated in i able s 6 through 12 

along v.'itn the calculated values of 

Spectrophotometry 

Aqueous solutions of L and KI 

The spectrophotometrie behavior of solutions of Ig in KI 

•was investigated at high concentrations of KI in an attempt to 

corroborate the suggestion from potentiometric measurements 

that polyiodide s of higher order in I- exist in such solutions. 

Several solutions containing the same concentration of 

total Ig cut varying amounts of total KI were prepared by 

volume trie dilution of £ stock solution of Ig in very dilute 

KI with a concentrr ted stock KI solution. The total KI con­

centrations investigated ranged from .01 to 3.6 k. The con­

centration of the stock Ig solution was determined by titra­

tion with a standard solution of sodium thiosulphate and that 

of the stock KI solution was calculated from the weight of KI 

used in preparation of the solution. 

A Gary recording spectrophotometer was used to obtain 

tne absorption spectra of these solutions. Due the the ex­

tremely high acsorcancies encountered in the ultraviolet 

spectra of such solutions, it was found necessary to use 1 cm 

solutions investi-
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Table 7. Data l 'or computat ion of the polyiodide formation funct ion 

(Ijt x 10% (I^)g x 10% (I^)g X 104 (I^)^ x 10% emf (v) (I") 

(I-)% = .098988, ionic stri sngth = 2.00 

0.20516 0.46586 0.45869 0 26157 0.01551 .097806 745.6 
U. 242C6 U.OL!65 0.41534 0.22950 0.01442 .097001 750.3 
0.98446 1.47028 1.44582 0.J700U 0.04602 .088686 761.6 
1.24)48 1.687V5 1.84040 1.21251 0.04017 .085426 771.4 
1•02656 2 .40872 2.44549 1.49711 0.04425 .082278 775.8 

1.649̂ 5 2.61745 2.54606 1.61479 0.04566 .081144 781.1 
2. U6554 4.468 58 4.459 20 2.04194 0.05040 .077804 777.5 
2.22211 4.80751 4.67875 2.18542 0.05200 .076208 779 .5 
2.56040 4.55019 4.47949 2.51661 0.05020 .073 409 784.0 
2.59 760 4.65491 4.47707 2.55284 0.05558 .073144 779.7 

2.98750 5.6524% 5.48849 2.94361 0 05954 .068797 791.4 
4.07775 5.92488 5.61600 3.02159 0.06045 .067760 794.9 
4.47440 6.84499 6.49420 3.30946 0 06341 .064889 800.1 
4.46504 7.08556 6.60966 3.39894 0.06410 .063779 806.3 
4.75474 8.04264 7.42045 3.67952 0.06656 .061166 810.7 

<5 .8 LO vil 8.27470 7.64760 5.74404 0.06749 .060356 •11.1 
4.05019 9.10694 8.47805 4.96641 0.06974 .057672 820.9 
4•I2882 9.44451 8.58649 4.04296 0.070 55 .056994 626.1 
4 . 4£J 22O 10.54592 9.68404 4.45454 0.07262 .055436 611.1 
4.5̂ 101 10.87424 9.96640 4.42145 0.07425 .054847 808.8 

4.67242 11.45760 10.49711 4.56745 0.07448 .053867 807.8 
4.56845 11.04171 10.11608 4.46729 0.07561 .054499 810.3 
4.66928 11.45800 10.49 748 4.564 51 0.07470 .053201 817.3 
4.66645 11.45700 10.49656 4.56149 U.07441 .054014 804.6 
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Table 6. Data for computation of the polylodlde formation function (temperature 
•cb + .02 °C) 

(IJc * (IK)a x 104 (I%)b % 10% emf (v) (I~) (D 
(l-)t = 0.04949, ionic strength = 2.00 

u. 11.38b 0.31405 0.30789 0.11077 0.00432 .048 503 744.6 
0.1173? 0.32336 0.3170c 0.11420 0.004 59 .048881 737.C 
0.30717 0.^8070 0.B6174 0.29855 0.01838 .046749 74 1 .  ]  
0.61677 0.910k? 0.89068 0.30786 0.01892 .046538 742.7 
0.49 791 1.4bc52 1.44849 0.48343 0 02620 .044703 74c.6 

0.51788 1.54737 1.51184 0.50276 0.02678 .044650 744.F 
0.66764 2.U6L13 2-00987 0.64754 0.03127 .04 3 226 745.1 
0.64 760 1.98678 1.93832 0.62821 0.03087 .043116 751.7 
0.84194 k.69913 2•62433 0.81570 0.03556 .041796 743.7 
0.8-3340 6.67359 2.60077 0.80739 0.03551 .041690 744.6 

1.00564 3.34691 3.24628 0.97318 0.03930 .040198 745.E 
1-0c032 3.3998c 3.29600 0.98736 0.03950 .040181 745.E 
1.16273 4.01633 3.88051 1.12393 0. 04249 .038808 746.3 
1.18930 4.loc?7 4.00074 1.14929 0.04300 .038630 743.6 
1.28990 4.60075 4.42593 1.24558 0.04505 .037514 750.E 

1.32903 4.78631 4.59780 1.28305 0 04591 .035977 754.7 
1.43087 5.30648 5.06827 1.38019 0.04789 .035942 757. 7 
1.4-J-657 5.49116 5.23466 1.41422 0.04861 .035518 76U.6 
1.55801 6.02942 5.70158 1.50099 0.05054 .034386 765.6 
1.59332 6.26231 5.90227 1.53430 0.05137 .033873 767.4 

1,67383 6.72531 6.29710 1.61086 0.05255 .0 5 )417 765.6 
1.72156 7.00172 6.53145 1.65624 0.05345 .032861 771.  ̂  
1 .80643 7.5u874 7.02760 1.73615 0.05507 .032004 771.9 
1.85366 7.8=763 7.30 536 1.78062 0 .0 b o4 6 .032134 758.7 
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Ta oie 8.  Data l 'or computat ion of tne polyiodide formation funct ion 

i. ky x 10% (I%)c * 10^ C. )a x 104 (I^)b % 10^ emf (v) (I") ( ) 
(I-h = 0.29696, Ionic strength = 2.00 

U .6759b 0.303J7 0 .29801 U 67300 0.01380 .28973 779.5 
U .67598 0 %8%41 0 .27687 0.62311 0.01260 .2892? 778.0 
ic .10748 0.98615 0 .98644 £.14761 0.03035 .27676 786 .7 
1 .99217 0.9310b u .91159 1.98306 0.02897 .28074 774.9 
.5 .7c5o7 1.806%7 1 .7.3135 3.70795 U.03950 .25901 812.8 

3 .44694 1.66700 1 .6%634 3.43068 0.03869 .25686 821.2 
b .23600 2.66798 'C .59531 5.21005 0.04589 .24516 818.8 
4 .85662 2.45977 k, .3756 5 4.83287 U.0449% -2492c 816.2 

' 6 .49%64 5.45180 3 .52378 6.43940 0.05043 .23250 8 55.9 
6 .7,5179 5.6041c 3 .487%9 6.69691 U.05150 .22843 840.7 

V .77146 4.29968 4 .14627 7.7%999 0.05475 .21943 849.6 
8 .%14c8 4.58581 4 .41367 8.17054 0.05591 • 21645 855.3 
y .17594 5.-55181 5 .11157 9.1248% 0.05h85 .20775 859.3 
.04648 5.70414 5 .43769 9.59200 0.06058 .20032 880.6 

10 . 5u8U8 6.384%% 5 .99759 10.33811 0.06308 .19086 903.2 

lu . 853 59 6.85354 • ̂  . 58o50 10.76975 0.06443 .18683 903.0 
11 .43%96 7.51808 6 .83930 11.36457 0.06598 .18206 912.7 
12 .Ub7%3 8.00118 7 .594 60 11.983%8 0.06800 .17500 926.0 
le .61568 8.43674 '} .77938 1%.53789 0.06937 .17017 947.1 
13 .18389 9.13614 8 .40-191 13.09984 0.07127 .16427 948.8 

1.5 .6y9b4 9 .60888 b .88990 13.61094 0.07273 .15900 959.3 
1,5 .9761% 10.03379 9 .%1800 13.88394 0.07551 .15767 955.3 
14 . blv96 10.71840 9 .82,889 14.41467 0.07520 .15244 962.1 
14 .9009% 11.17828 10 .24121 14.79851 0.07589 .15148 953.9 
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Taule 9. D^ta l 'or computat ion ol '  the polylodide format!on funct ion 

( 1. ) t x 10* (I..) x 10* (I.,) x 104 (I,.) x 10% emf (v) (I") C. v V & ci U 

U~>t = 0.49464, iordc ntren^th a 2.00 

1.l%0ùo U .29442 0.28865 1.11778 0.01354 .48285 802 .0 
1.1449? 0 .40065 0.%94?6 1.14f02 0.01400 .48474 799 .4 
4-6294? 0 .97772 0 .95620 4.72904 0.04040 .46̂ 9 5 835 • 2 
4.73884 1 .00487 0.98276 4. 7 %9 00 0.0408G .45880 827 .0 
6.10086 1 .68470 1.64552 6.08441 0.03890 .44443 8 51 .3 

6.48687 1 .75499 1.71402 6.46974 0.03990 .42637 872 .9 
ô.4469% 2 .48828 2.42775 8.42881 0.04489 .40927 804 .L 
8.9947b 2 .57422 2. 50542 8.96970 0.046 51 .40176 891 .1 
10.??Lcl 4 •15420 4.U6088 10.74200 0.04965 .39030 899 • k 
il.52169 4 .40060 4.29675 11.488 74 0.05101 . 58381 908 .0 

14.1084b 4 .99168 3.85670 14.00991 0.05417 .36708 925 . r. 
14.0161% 4 .11487 4.92092 14.47441 0.05472 .364 75 930 • k 
lu.4507% 4 .88118 4.68219 15.40390 0.05810 .34709 941 .7 
15.68464 4 .96872 4.76616 15.64598 0.05864 .44303 95̂  .4 
17.64804 5 .8%496 5.52046 17.58289 O.O62IO .32255 987 c. 

18.%470% 6 .16544 5.81919 18.17884 0.06540 .51481 992 . 5 
19.79884 6 .91152 6.45946 19.74425 0.06576 .30336 1007 .1 
20.44477 7 .18749 6.69226 20.36684 0.06671 .29678 1025 r.  
21.9761% 7 .98446 7.48516 21.9012? 0.06910 .28405 1044 .0 
22.29657 8 .18647 7.58709 22-22070 0.06992 .27888 1050 • k 

24.15140 9 .28928 8.54970 24.06590 0.0729? .26290 1070 . ? 
%4.5774% 9 .5174% 8.74461 24.48998 0.07360 .25942 1079 . 7 
25.6907% 10 .44746 9.58044 25.59492 0.07615 .24599 1086 .1 
2d.64400 10 .88944 9.98574 26.54414 0.07727 .24033 1106 • 1 
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Ta Die 10. Data l'or  computat ion of th 

( V * x  < V c x  1 0 2  « V » x  1 q 4  

(I )% = 0.69290 

1 .70439 0 .31122 0 .30511 
1 .56640 0 .28437 0 .27879 
6 . 010o2 1 .11076 1 .08685 
6 ,52801 1 • 20613 1 .17901 
10 .26 DO 7 1 .92030 1 -87%55 

9 .79773 1 .84591 1 .80089 
14 .2997D 2 .78955 2 .71093 
13 .22279 2 .54111 2 .47310 
la .Ud41u 3 .70U64 3 .63818 
17 .49607 ,5 .48713 ,5 .37900 

%2 .9 50o6 4 .86640 4 .67249 
2.5 .76258 5 .00016 4 . 796.32 
2U .86910 5 .91560 5 .60797 
2? . 7oo4ti 6 .22170 5 .86681 
51 .15002 ? .34318 6 .82769 

•il .69606 7 .51-595 ti .97350 
,54 .39584 8 .51066 7.84750 
•35 . 52-316 8 .94102 8 .22.; 19 
38 .60143 10 .25024 9 .40820 
,37 . 4.5152 y .73735 8 .94566 

40 .9948% 10 .51160 10 .4,3417 
,39 .57924 10 •64021 9 .75718 
40 .9577.5 11 .28776 10 .34625 
40 .41812 11 .03892 10 .11817 

polylodide formation funct ion 

(1^)b x 10% emf (v) 

or,le strength : = 2.00 

1 .70134 0 01392 
1 .56361 0 .01357 
5 .99965 0.05213 
6 .51622 0 .03375 
10 .24695 0 .04121 

9 .77972 0 .04061 
14 .27264 0 .04745 
13 .19805 0 .04600 
18 .64778 0 .05310 
17 .46258 0 •05171 

22 .88384 0 .05849 
23 .71462 0 .05399 
26 .81302 0 .06323 
27 .69661 0 .06398 
31 .06174 0 06757 

31 .62682 0 .06818 
34 .31737 0 .07202 
3 5 .44087 0 .07300 
38 .50735 0 .07712 
37 .34206 0.07511 

40 .88970 0 .08016 
39 .48167 0 .07798 
40 .85427 0 .07971 
40 .31694 0 .07904 

.67993 820 .1 

.67362 832 • 6 

.6 5064 875 .3 

.62395 885 .8 

.58815 930 .4 

.59040 919 .8 

.55505 948 .5 

.56092 9 51 .4 

.51606 993 .2 

.52499 984 .4 

.47414 1032 .9 

.47112 1049 .5 

.43192 lli:? .0 

.42906 1100 .3 

.40249 1130 .3 

.39722 1141 .8 

.36287 1205 .1 

.35769 1204 .0 

.32571 125F .4 

.33958 122.: .3 

.30480 1285 .7 

.32084 1261 .2 

.30888 1278.4 

.31352 1270 .9 



www.manaraa.com

Ta oie 12- Dp ta l'ur computation of 

(1 x 10* (l^)c % (!%)% x 10 

2. bob du 
6.068b) 
7.91590 
9.41^fau 

lu.bVul! 

U")t 

0.50661 
0 76654 
0.96181 
1.13497 
1.28406 

= 0.98216 

u.50060 
0.72104 
0.94111 
1.10995 
1.25519 

16 .86796 1 .67ub2 1 .66465 
14 .7̂ 017 1 .80695 1 .75995 
19 .00̂ 64 2 .53126 2 .27108 
19 .80901 L .42079 .35715 
24 .20446 L .99787 L .91197 

2b .b7357 6 .2249o 6 .12950 
62 .016o7 5 .99825 6 .86504 
61 .94876 4 .11607 6 .97497 
6 J .15974 b .30992 b .07641 
40 .70596 b .51408 5 . 2590% 

46 . f4240 6 .66758 6 .24014 
4 7 .0tioV2 6 .96702 6 .47412 
54 .48467 8 .496o8 7 .854 56 
09 .07720 9 .60960 8 .86235 
59 .13 7u6 6 9 .9ol?̂  9 .16640 

64 • 66002 1.L .40760 lu .49711 
64 .  11156 11 •2?6bl 16 .65805 

po ly iodide formation function 

(!%)% x 10% emf (v) (I") Q 

ionic rtrenpth = 2.00 

2.53266 0.01450 .9:564 
6.06152 0.02598 .92377 910.0 
7.90449 0.06009 .91295 920.0 
9.40165 0.06607 .89144 950.2 

10.56253 0.0 5477 .88725 946.4 

16.82161 v.06967 .84651 998.9 
14.77257 0.04050 .84056 998.6 
18.97996 0.04465 .8l%41 102:.7 
19.78544 0.04558 .78910 1065.7 
24.17566 0.04975 .75428 HOo.7 

25.84208 0.05111 .74162 1115.4 
31.63056 0.05555 .69672 116.; .  1 
31.97524 6.O06I6 .68746 1170.1 
39.10898 0.06175 .624 71 1255.2 
40.65157 O.O6288 .60801 1271.6 

46.68000 0 06754 .552-12 1 554.1 
47.5 5398 o.06850 .54204 1654.5 
54.40655 0.07442 .47555 1466.4 
58.98888 0.07801 .46725 152?.5 
59.78695 O.07955 .42216 1549.8 

64.55555 
64.00818 

0.08620 .58945 1579.1 
O.O8288 .59154 1582.1 
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Table 11. Data for computat ion of the polylodlae for i i int lon funct ion 

Vt X 10% (1^0 X 10% di,)a x 104 (1̂ )% x 10% eii.l' ( v ) (I") 0 
(I") t  = 0.84077, ionic strength = 2.00 

2-14320 0.31%50 0.30637 2.14014 0.01443 .82066 851. 2 
1.95735 0.2 617 0-28056 1.95455 0.01540 .8%394 845. 5 
6.91579 1.01555 0.99 320 6.90586 0.03156 .76447 909. 5 
7-39753 1.08431 1.0604 5 7.38692 0.03222 .76994 904. 7 

1.1.810,30 1.75355 1.71245 11.79 318 0.0 3931 .7%482 950. 1 

13.%0%0% 1.9600c 1.91128 13.18291 0.04173 .71382 966. 3 
16.46480 2.48510 2.41976 16.43060 U 04583 .68471 991. 7 
lb. 74794 2.37825 2.31572 15. 7%478 0 04500 .69182 981. 5 
21.61418 3.29733 3-19974 21.58218 0.05146 .63240 1066. 6 
%1.98868 3.41613 3.31181 21.95556 0.05198 .63048 1051. 5 

%5.74380 4.07728 3 .9,3940 25.70441 0.05555 .59842 1090. 4 
24.74949 4.20459 4.0565% 24.70893 0.05606 .59530 1023. 2 
31.16160 5.20725 4.98540 31.11175 0.06068 .bbl32 1131. 9 
3%.80680 5.5330% 5.%7708 32.75403 0.06208 .53713 1155. 6 
35. %6454 6.08608 5.75516 35.20699 0.06539 

35 -9-30 b4 6.28644 5.91943 35.87135 0.06521 .50363 1203. 2 
39.93878 7.19488 6.70%26 39 .87176 0.06860 .46964 1266. 7 
41.67736 7.80ol6 7.22700 41.60509 0.07068 .44976 1280. 0 
44.017%3 8.50 313 7.84060 43 .93882 0.07317 .42519 1318. 0 
48.%8317 9.8067% 9.00939 48.19307 0.07740 .38650 1383. 7 

48.83559 10.007u 9 • 18 34 3 48.74376 0.07799 .38143 1391. 5 
02. oO? 30 11.4 3%96 10.47930 52.40250 0.08186 .34994 1429. 0 
u%.6%173 11.39848 10.44 774 52.52128 0.08180 .35076 14 33 . 2 
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quartz eel- s with matched cue r-tz spacers of 9.5 mm width. The 

patn length traversed ir. the solution itself was thus reduced 

to .Qc cm. A solution of exactly the same KI concentration 

? s tnat of the sample under investigation w^s used as a blank-

Tne actual absorption due to the KI was negligible in these 

solutions in the spectral range of interest except for the 

mo st concentrated KI solutions. Even in these cells, however, 

tne acsorcancy due to the KI was less than 1> of tne observed 
o 

acsorcancy at 2630 A- r-o attempt was made to maintain con­

stant ionic strength in these solutions in view of the fact 

tnat solutions up to 3-6 k in KI were to be examined. The 

spectra so ootsined are displayed in Figs - 3 and 4. The data 

is tabulated in Tacle 13. 

Amylose-polyiodlde complexes 

The spectra of the three different emylose-polyiodide 

complexes isolated by means of the electrophoretic technique 

descriced in an earlier section were investigated for compari­

son with the spectra of polyiodides in aqueous solution con­

taining no complexing agent of tne amylose type. 

The acsorcancy of these fractions s s isolated from the 

electropnoretic apparatus was sufficiently high to require the 

use of quartz spacers in 1 cm quartz cells. A water blank 

was used in each instance inasmuch as no suitable restent 

blank could be prepared due to the lac& of concentration date 
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Fig. 3. Spectrophotometrlc behavior of a solution containing 
4.963 x 10-4 m ig as a function of the total I~ 
concentration 

A = 0.101 M KI E = 2. OUI M Kl 

B = 0. bOl M KI F = 2.401 M Kl 

C = 1.001 M KI G = 3 .001 M Kl 

D = 1.601 M KI H = 3.601 M Kl 

Quartz cells and spacers were used (path length, 
O.Ob cm). The blank contained the same concen­
tration of KI without Ig. 
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Fig. 4. Spectrophotometric behavior of a solution containing 
4.070 x 10~4 K Ir, as a function of the total I" 
concentration 

A = 0.101 M KI 

B = 1.001 M KI 

C = 1.601 M KI 

D = 2.001 k KI 

E = 3.001 K KI 

F = 3.601 In KI 

Quartz cells and spacers were used (path length, 
0.05 cm). The blank contained the same concentra­
tion of KI without 1%. 



www.manaraa.com

ICAL DENSITY 

> 00 m 'n 

3.T6 



www.manaraa.com

7ka 

Ta^le 1-3 . Spec trophotoiLetric cenevicr of aqueous solutions 
T V-

II 4-> .-J 
H
 4.965 x ; 10™4 k = 4.070 X 10~"4 k 

(l-)t 6̂80 A3c dQW (l_)t A p 
£̂680 A-355O" 

• Oil .850 . 556 .011 .695 .455 

.051 .9o8 .530 .051 .767 .518 

.101 .973 .645 .101 .799 .530 

. c.bl .964 . 3 57 .£51 .79% . 537 

. 501 .936 .671 .501 .774 • 551 

1 .oui .896 .698 1.001 .734 . 569 

1.601 .850 .730 1.601 .691 .580 

c.401 .769 .759 £.001 .668 .592 

3.001 .753 .761 3.001 .613 .638 

•3 • Sol .718 .800 3.501 .585 .646 

aAcsor car.cy et %S80 A. 

"Acsor cer.cy at 5550 A. 

for these fractions. A compe rison of the qualitative aspects 

of these spectra wit:: those of aqueous polyiodide ion spectre 

we r a ruaj or ocjec tive in this inves tigstion. These spectra 

ere displ eyed in Fig. 5. The significance of these spectra 

will ~e d iscussed in e later sectio 
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RESULTS AHD DISCUSSION 

Elimination of Parameters from the Regression kodel 

Allowance is made in the regression model as set forth 

by Eq. be for the possible existence of eight different poly-

iodide ions in the systems under investigation. Since it is 

quite li&ely thet certain of these ionic species do not 

actually occur in these systems, it would greatly simplify 

tne mathematical analysis of the data if some evidence could 

be crought forth for the elimination of some of these ions 

from consideration. Similarly, it would be of great value if 

evidence could be obtained which might be construed as strong­

ly indicative of the presence of any of these polyiodides in 

the systems studied. The properties of the polyiodide forma­

tion function emphasized cy Eos. 1£ and 13 suggest that a 

preliminary qualitative examination of in the limiting 

conditions of zero concentration of the reectants as a func­

tion of (I ) and (1^) should shed some light on this subject. 

If 1^ formation actually occurs in the systems under 

study, Eq. 1£ predicts that (^)(t, )=q should be a linear func­

tion of (I~). Since K* is a good approximation to in this 

same limit, it is to be expected that the same functional 

relationship would exist between K* and (I-) at zero Ig con­

centration. The value of K* at zero 1^ concentration was 

obtained cy extrapolation of the observed values of K* as a 
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function or ( I v ) . These extrapolated vslu-s were obtained 

i'rom Fig. c ana ere ts culated In Tscle 14. The functional 

dependence of K*,T v ucon (I ) is illustrated graphically 
U £ J " u  

in Fig. c. Tnis oovious linear dependence in accordance with 

the prediction or Eq. 1c. is taken as strong evidence for the 

formation of 1% in these solutions, and for the inclusion of 

tnis term in the regression model. 

Tacle 14. Extrapole ted velues for K* at (I, ) = 0 as a 
function of (I~) 

K?V=0 
(I") 

745 .049494 

750 .098968 

770 .29696 

791 .49453 

512 .69290 

831 .84077 

846 .98216 

In view of the fact that the functional relationship 

predicted by Ec. Ik, is so exactly realized, the simple linear 

regression suggested by this relationship was performed in 

oraer to obtain estimates of and K4. The value of K3 ob­

tained in this manner as an estimate of the intercept in 
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Fig. G. Limiting values of K* at zero Ig concentration 
as a function of the KI concentration in moles/liter 

These values were obtained by extrapolation from 
the data of Fig. 2, and also represent the 
theoretical values for <£>, the polyiodide formation 
function, at zero Ig concentration. 
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:ae value or iron, tnis regression 

as estimated cy the slope of the line in Fig. 6 is 102.49 +_ 

0-81. 

It should also oe noted that if polylodide ions such as 

15, I7, Ig, or any ion or the type *~R+1> other then I3, are 

formed in the systeas investigated, it is predicted by Eq. 

1-5 that (^)^_ j ^ wou-d be a function of (Ig) . The data of 

Iaoles 5 throu~n 1£ has ceen graphically displayed in Fig. 7. 

One of the outstanding features 01' this graph is the fact that 

trie value of (^)at zero I~ concentration appears to be inde­

pendent of the Ig concentration. The contours of constant Ig 

concentration were obtained by interpolation along the experi­

mentally determined contours. The significance of this inde­

pendence ofC|)(j-)=Q STld (1%) is that no significant contribu­

tion to polylodide formation in the systems under investiga­

tion is made by an ion of the type Ign+l °"'rier then Î . 

Regression kodels 

Full model 

In view of the fact that three of the eignt parameters 

of the regression model as set fortn by Eq. £8 may be excluded 

cy consideration of the qualitative properties of , tne 

original model may ce reduced to the following five parameter 

model. 
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Fig. 7. Polylodide formation function as a function of the 
free I" concentration in moles/liter 

Contours of constant free Ig were obtained by 
extrapolation from the data of Tables 6 through 12. 

A = 0.49898 h KI E = 0.69290 M KI 

B = 0.098988 K KI F = 0.84077 M KI 

C = 0.29696 k KI G = 0.98216 M KI 

n = 0.494 5,3 h KI 
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ft). -yv - ~u r -x y.x -r + A0 x̂  + A4 r.4 (Eq. 51] 

v. ne re — K^, A-^ — , A^ - £Kg, A^ - -3Kp, A^ — 3Kq 

xn = (I"), x, = (!,)(!"), x = ( 1., J ̂ ( I ™ ), end 
•i- C C O <£ 

%4 = 

Since several observations or (^) are actually obtained ex­

perimentally, one Bay represent Eq. 31 in the nore general 

form, 

j = Aoj + X Ai Xij (2q- '32' 
1 

<& 
-where 1 = 1, £, 5, and 4 

j = 1, _, -5, . . . , n, where n is the number of observa­

tions on(|). 

Tne theory of multiple regression used in this analysis may 

ce round in Ken.pthorne (55). In sugary, it may be simply 

stated that the best, linear, unbiased estimators for the 

parameters oi' a model such as the one expressed by Eq. 32 

may be obtained by g straightforward application of matrix 

metnoLS. Tne variance of these parameters may also be ob­

tained rrom the variance-covariance matrix elements and the 

basic estimate of variance-

Tne actual computations were conducted with the aid of 

tne Ick SbO computer. The estimated values for the regres­

sion coefficients together with their estimated variances 

are tabulated in Table 1 . -he v ?riance-coveriance matrix 

for tnis model is given in Table 15. The estimates for the 
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u_ie 16 . V a ri n nee- co v ; ri p nee iiiatrix for full regression n:oc el 

.UOvUv1 X 1U™1  -6 X 10L 7.  oL94-]0 X 

0
 

1—
I 

-  5 .41750L X 10'  

.71LLLJ X 10^- .01,94 7-)  X 10^ — C • 7 i / - .865 X 109 -1 .-SCO 5U7 X ic^u 

.UL9440 X 10u  — L .7LB6C) X 10^ 7.  70601b X lQl'd -1 .%099Lb X 101 '5  

.417)0^ X 10° 1 . ,560-587 X 

0
 

I—
1 

0
 

1—
1 

-1 .  %099cb X 101'5 6 .86126,5 X lu" 
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.ecu.e le. ZsZLiu Led regression coefi'1 c! entr f?i* fv.ll -r.d 
restricted o d e 1 s a 

Full model: A^ = 745.016 V (A^) = 10.7704 

Â  = 137.-378 V (Â ) = 7̂ .8777 

Ag = 5.857c x 10" V (Â ) = 29.0974 x 10̂  

Aj = 4.8541 x 10° V (Aj) = £7.99c: x 10̂  

Â  = c.3518 x 10̂  V (Â ) = c4.9%SS x 10̂  ̂

i\odei excluding 17 (A?) : 

Ag = 754.7o7 

A1  = 89.8011 

Ag = 5.5085 5 x 10° 

Aa = 5.11543 x 10y 

hoael excluair. t r -  Ic° (A/): 

Ag = 717.115 

Ax  = 149.090 

Ag = 8.C2959 x 10° 

Â  = 9.0108 5 x 10̂  

sIhe variance 01" these estimates is given only for the 
fu.i noaex, since tests of significance indicated that the 
restricted i..oaeis were not as good as the full mode.:- in 
fitting the data. 
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i'orn.8 tior. cor.s;sr.:r of tne polylodide lor. =• cocir rec vit h 

these regression coefficients are tabulated as Table 19. 

Restricted models 

It is informative to eliminate certain of the parameters 

from the regression model, end to perform an analysis of the 

data excluding this term from the model. It is possible by 

suc.-i technique to perform a statistical test which will ascer­

tain whether or not the parameter excluded actually contribut­

ed significantly to a reduction of the sums of squares due to 

deviations about regression. From a physical point of view, 

such a procedure is actually testing whether or not the forma­

tion constant for any given polylodide ion, as estimated by 

regression technique, is significantly different from zero. 

Consequently, this procedure allows one to ascertain whether 

or not the existence of any given polylodide ion is required 

to explain tne experimental observations-

Since independent evidence for the existence of 1^ and 

I~ exists and tne investigations of Dsvies ar.d C-wynne (33) 

point strongly to the existence of Ip, only two restricted 

models were considered. One such model excluded Ig from 

—•3 
consideration, arid the other excluded ID from consideration. 

The variance-covariance matrices associated with these re­

stricted models are given in Tscles 17 and IS. The estimated 

regression coefficients from these models appear in Table 15. 
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lacle 17. Varience-cov-riance ILatrix for model excluding 
t*3» 

L.i?G-57'J X 10"1 -4.01-JCSL X 1C2 I .404 707 X 10® 

A 1 f) 

-4.016&55 x 10̂  7.021760 x 10" -1.793656 x 10̂  ̂

5.40471c x 10" -1.793556 x 10̂ ° 4.962154 x 10̂  ̂

/acle 16 • V ar 1 an c e - c o v ar i a n c e matrix for model excluding 
i:5 uj 

-1 1.̂ 6904% x 10 

.7.5897%! x 10̂  

6.926651 x 10° 

-7.3B97&1 x 10̂  

5.312461 x 10° 

-c.157562 x 109 

5.926581 x 10' 

-5.157552 x 10-

5.572501 x 10 12 

Tne corresponding estimates of the formation constants are 

tabulated in Tacle 19. 

Tests of Significance 

The regression analysis of this arte may be summarized 

in tne analysis of variance which apperrs in Table 20. In 

order to determine whether or not either of the restricted 

models is virtually equivalent to the full model in account­

ing lor the deviations about regression, it is simply required 

to examine the expected mean squares which are tabulated. 

The theory of such testing is discussed by Kempthorr.e (55). 

The essential point to realize is that if either of the 
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Iscle Is • estimered r.olviocice formation ccr.r-rsr.T.p for full 
. ana restricted models8 

ill model: 

i-.odej. excluding I0'̂  

VN
 LI 74 6.016 + 3 • 282 

%
 

II 13 7.378 ±. S. 637 

1. 9335 x 10° 1 +
 o
 

%S97 X 10 

I. 5̂ 14 x 10̂  + 0 . 1764 X 10' 

Ka = 7. 5 59 2 x 10® 1+
 o
 

5253 X 10' 

l-.o q e _ excluding : K, = 754.7 

K4 = 69.851 

K. = 2.8043 x 10° 

9 
K0 = 1.038c x 10 

K3 " 717.115 

II .Sd 

149.090 

^6 " 4.2648 x 10̂  

K8 = 3.u03S x 
10® 

ci '"H These formrtion constants are for polylodide formation 
c$ t 25 + .02 °C end et an ionic strength of 2.00. 

restricted regression models is equally as good es the full 

model in fitting the date, then the single degree of freedom 

due to tne fitting of any one parameter after fitting the 

remaining parameters is associated with a me en square which 

shoulc. simply be an estime te of error. Thus, one should be 

acle to perform a statistical test of significance for this 
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Taule cO. Analysis of va ri a nee for full and restricted regression models 

Dource 
Degrees of 

freedom 

Regression on A-^, A^, A^ , and A^ 

Regression on A^, A^, and A-^ 

Regression on A^ after fitting 
A1, Ag, and A^ 

Regression on A^, A_, and A^ 

Regression on A4 after fitting 
Ai, Ag, and A^ 

Deviation auout regression 

4 

3 

•5 

1 

160 

Sum of squares 

6.747125 x 10' 

C.7164L1 x 10 
6 

3.070% x 10 

6.666496 x 10 

8.0627 x 10" 

5.61260 x 10' 

6 

Mean square 

3.0YCL x 10' 

".0627 x 10 

303.288 

O) 

Total 164 
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single orthogonal degree of freedom-

Tne mean square due to deviations about regression in 
( #. 

the full moael and tne mea:. square due to the fitting of some 

additional parameter after fitting the restricted model would 

bjtn ce estimates of error if thfe additional parameter was 

actually not significantly diiferent from zero- The ratio 

of two independent estimates of error is an F statistic-

It is possible to test the hypothesis that the paaËmeter 

excluded in the restricted model is not significantly differ­

ent from zero oy means of the usual F test - The statistical 

criterion to oe used is F^ -|_gQ since the number of degrees 

associated with the error estimates are 1 and 160 respective­

ly • 

Tne F ratio calculated for a test of significance of A3 

is =4.4, and for the significance of A4 the F ratio is 222. 

In view of the fact tnet Fj is only 5.805 even at the 1% 

level, these calculated F values are both highly significant 

and indicate that the restricted models are not nearly as 

good as tne full mode j. in accounting for the data- Thus, 

tne re is no evidence that Ig and I~'3 do not exist, but ere 

poiyiodides whose existence in the systems studied is rather 

likely• 
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The spectrophotometric behavior 01' solutions of Ig in 

rstr.er concentrated I- we s investigated in sn effort to obtain 

some corroborative evidence for the existence of polyiodides 

of higher aolecularity in I then . The exceedingly high 

molar acsornancies of such solutions precluded the attainment 

oi a_l cut tne most moderate concentrations of total Ig. As 

may «e see:, in Figs. -3 and 4, even when the total Ig concen­

tration is of the order of 10"^ and the length of the path 

traversed cy the light is reduced to .05 cm, the ecsorcency 

is nearly unity. It was still possible under these condi­

tions to hope to gain some evidence for the formation of Î . 

The most salient feature of aqueous solutions of Ig and 

I~ is the appearance of two prominent maxima in the ultra-
o o 

violet spectrum at about 2900 A and 3500 A, neither of which 

is present in aqueous solutions of Ig alone. The relative 

intensities of these maxima have been observed by numerous 

investimators to remain very nearly constant. The maxima have 

ceen universally attributed to the I? ion. Indeed, the deter­

mination of the equilibrium constant for I^ formation has 

been performed at several temperatures by AWtrey and Connick 

(-3d) cy making use of the extinction coefficient of I^ at 

JC900 A • 

Tne T~ concentrations investigated in the present work 

covered a far greater range than has usually been subjected 
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stantiai. snirts in the position of maxima were ocserved, a 

:..o s t. unexpected cehavior of the usual ultraviolet maxims, was 

observed- It is evident frem the data of Table 1-3 that the 

two maxima which have long ce en attributed to 1^ alone cannot 

in fact belong to only one ionic species under the conditions 

of these experiments. It is immediately ocvious that although 

the cSbG % absorbancy rises to a maximum and then sharply de­

creases es tne I concentration is increased, the 3550 % max­

imum rises rapidly at first and then more slowly as the I~ 

concentration increases. Nonetheless, the higher wavelength 

maximum continues to increase even when the lower wavelength 

maximum is rapidly decreasing. This is not the behavior one 

would observe if a single absorbing species were responsible 

for both maxima-

The behavior of these spectra as illustrated in Figs. 3 

and 4 is reminiscent of the spectra obtained from dyes Which 

undergo color changes at various values of pH due to the 

interconversion of an acidic and basic form. One may even 
o 

note the presence of an isosoestic point at about 3050 A-

It is, therefore, suggested by analogy that the in", er con ver­

sion of and an ion containing- one more I component should o 

account for these observations. Thus, the da ta was qusntits-
i 

tively analyzed to obtain an estimate of , the equilibrium 

constant for the reaction 
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Tne auso r car-cy , A, p; any rive:, wrvelengtn of a solution 

i:. wnicn Ij e.r.d 14 pre tne only absorbing species cay be 

expressed as follows: 

A = d ê  (Ij) + d e4 (Ip (5c. 34) 

where d is tne path length of tne incident lig.it through the 

solution 

e? is the Lolar a cso rcancy index of at this wave­

length 

e. is tne molar acsorcancy index of 12 st this wave­

length 

and tne parentheses indicate molar concentrations -

In solutions containing very little free Ig, the total Ig 

concentration may be expressed as the sum of the concentra­

tions of Ij and 14. If (Ig)^ is held constant, one may write 

(TJt = dy + d4) = c (Eq. 35) 

Eliminating (l4) through the equilibrium constant for 

the reaction expressed In Eq. 33, and solving for (I^î, one 

obtains 

Sine 

nen 

:Ij) = c / [l + %4 (I )] (Eq. 36; 

(I4) = K4 (Ig) (I ) (Eq. 37) 

(1%) = K4 c (I") / [l + K4 (I')] (Eq. 38) 
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U ::c r. sucs; i ru " ion : cr ( I_ ) and ( ! - ) l'rc Z n. .5-- ar.â -SB o -* 

i:. to Eq. 54, c:.e cet ai;, s 

A = [à ê  c + à ê  c (!")] / 1 + (I") (Eq. 39) 

Tne quantity, d e% c, contains only known parameters 

and experimentally determinable quantities and may be defined 

as 0 . 

One may rearrange Eq. 39 to obtain the following form 

wnicn may ce readily analyzed due to the linear relationship 

suggested. 

1 - 1 1 (Sc. 40) 
A - D D -r d e^ c (c + d e^ c) (I") 

It is evident that a linear relationship should exist 

between 1 / (A - D) and 1 / (I-). 

If (I~)t is very much larger than (I^)%, one may approxi­

mate (I-) by (l~)^. It should be noted that the ratio of the 
1 

intercept to tne slope is actually an estimate of . The 

linerrity of the experimentally octained data for solutions 

equal to or greater than 1.OC X in KI is shown in Fig. S for 

two different I_ concentrations. A linear regression analysis 

of 1 / (A - D) on (I-) for these same solutions was performed 

using the ocserved acsorcsncy at 2S80 % and a molar acsorb-

4 -ancy inaex of 4.0 x 10 for I?. Tnis data was taken from 
_ 1 

Table 13. The estimates obtained for K4 by this analysis 

were 0-107 end 0.100 for the two different total 1^ concen­

trations. Tnis agreement is considered to be rather good. 
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Fig. 6. Reciprocal of (-^£880 - as a function of the 

reciprocal of the total I- concentrations for 
solutions in which the total I- concentration 
is approximately equal to the free I- concentra­
tion X the intercept on the abscissa is an 
estimate of -K̂ ) 
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me vs_ue of K» cri cul' red fro IL trie ratic cf K, to K-, 
~x U 

obtained cy the regression analysis of the polylodide forma­

tion function is 0.164. These velues agree in order of mag­

nitude , and in view of the fact that tne conditions in the 

solutions used to octain the two estimates were quite differ­

ent, this discrepancy is not considered large-

Amy lose- poly iodide Complexes 

The most prominent feature of the absorption spectre of 

tne various complexes separated by electro kinetic means is 

tne appearance of very pronounced visible maxima- The blue 

complex is characterized cy a maximum at 5900 % and the red 

complex is characterized by a maximum at 5120 %- In the case 

of tne yellow-orange complex, absorption of light in the 

near ultraviolet region of the visible spectrum is also some­

what higher than that of an Ig - I- solution containing no 

amylose-

The fact that the spectra of aqueous solutions of poly-

ioaides are so dissimilar to those obtained in the presence 

of amylose is taken as strong evidence thet the type of poly­

lodide ion wnicn constitutes the core of the amylose iodine 

complex is of an entirely different nature from the poly­

lodide ions encountered in free solution. 

It is entirely possible that the polylodide ions in solu­

tion do not possess the same spectral characteristics es those 
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iii uhe amylose helix simply uecause ihey pre no u cons brained 

to form a linear array as must those in the helix. It is 

also possicle that the formation of 15, I~r~(, and Ig, although 

of 11-tie importance in tne absence of amylose, may ce of 

considerable importance in the formation of a helical complex 

with amylose• 
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-• The distribution coefficient for Ig between CC14 and 2.00 

X KlvOj has been determined at 25° C . The KK0>3 appears to 

act merely a s an inert diluent in this system. 

2• The formation of various polyiodide ions in aqueous solu­

tions at moderate concentrations of XI and over the entire 

solubility range of Ig has been investigated. A qualita­

tive examination of the data seems to indicate that the 

formation of ions such as 1^, 1^, and 1^ is of no great 

importance in these systems. The rather surprising 

observation was made that ions such as 1%, Ig, Ig, end IÔ 

appear to explain the data satisfactorily in terms of 

specific interactions. 

3. A multiple regression analysis of the data led to the 

estimation of formation constants for I~, 1^, I~, I~, and 

Iq̂  at 25° C in solutions of ionic strength 2.00. 

4. Spectrophotometric evidence has been obtained for the 

formation of I^ from and I in aqueous solutions. An 

estimate of the extent to which this reaction occurs was 

in fair agreement with that obtained in the regression 

analysis. 

5. Fractionation of amylose-polyiodide complexes was achieved 

by means of electrophoresis on a hanging glass curtain. 

This technique appears to be a good method for preparing 

small quantities of homogeneous low molecular weight 
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smylo se. 

5 • ïne po iy iodide s formed in aqueous solution ir. the aosence 

of amy lose appear to ce of an entirely different nature 

fro 2» tnose formed in the presence of amy lose. 
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